Composite materials are becoming increasingly more valuable due to their high specific strength and stiffness. Currently, most components are operated for a number of service cycles and then replaced regardless of their actual condition. Embedded fiber Bragg gratings are under investigation for monitoring these components in real time and estimating their remaining life. This article presents research conducted on a novel technique for prediction of the remaining life of composites under fatigue loading using embedded fiber Bragg grating sensors. A prediction is made of the remaining life at every cycle based on data collected from the sensors and the previous loading history.
A structural health monitoring (SHM) study of biaxial glass fibre-reinforced epoxy matrix composites under a constant, high strain uniaxial fatigue loading is performed using fibre Bragg grating (FBG) optical sensors embedded in composites at various locations to monitor the evolution of local strains, thereby understanding the damage mechanisms. Concurrently, the temperature changes of the samples during the fatigue test have also been monitored at the same locations. Close to fracture, significant variations in local temperatures and strains are observed, and it is shown that the variations in temperature and strain can be used to predict imminent fracture. It is noted that the latter information cannot be obtained using external strain gages, which underlines the importance of the tracking of local strains internally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.