Objectives This study aims to evaluate an automatic segmentation algorithm for pharyngeal airway in cone‐beam computed tomography (CBCT) images using a deep learning artificial intelligence (AI) system. Setting and Sample Population Archives of the CBCT images were reviewed, and the data of 306 subjects with the pharyngeal airway were included in this retrospective study. Material and Methods A machine learning algorithm, based on Convolutional Neural Network (CNN), did the segmentation of the pharyngeal airway on serial CBCT images. Semi‐automatic software (ITK‐SNAP) was used to manually generate the airway, and the results were compared with artificial intelligence. Dice similarity coefficient (DSC) and Intersection over Union (IoU) were used as the accuracy of segmentation in comparing the measurements of human measurements and artificial intelligence algorithms. Results The human observer found the average volume of the pharyngeal airway to be 18.08 cm3 and artificial intelligence to be 17.32 cm3. For pharyngeal airway segmentation, a dice ratio of 0.919 and a weighted IoU of 0.993 is achieved. Conclusions In this study, a successful AI algorithm that automatically segments the pharyngeal airway from CBCT images was created. It can be useful in the quick and easy calculation of pharyngeal airway volume from CBCT images for clinical application.
Objective:The aim of this study was to develop an artificial intelligence (AI) algorithm to automatically and accurately determine the stage of cervical vertebra maturation (CVM) with the main purpose being to eliminate the human error factor. Setting and Sample Population:Archives of the cephalometric images were reviewed and the data of 1501 subjects with fully visible cervical vertebras were included in this retrospective study. Materials and Methods:Lateral cephalometric (LC) that met the inclusion criteria were used in the training process, labeling was carried out using a computer vision annotation tool (CVAT), tracing was done by an experienced orthodontist as a gold standard and, in order to limit the effect of the uneven distribution of the training data set, maturation stage was classified with a modified Bachetti method by the operator who labelled them. The labelled data were split randomly into a training set (80%), a testing set (10%) and an validation set (10%), to measure intra-observer, inter-observer reliability, intraclass correlation coefficient (ICC) and weighted Cohen's kappa test was carried out. Results:The ICC was valued at 0.973, weighted Cohen's kappa standard error was 0.870 ± 0.027 which shows high reliability of the observers and excellent level of agreement between them, the segmentation network achieved a global accuracy of 0.99 and the average dice score overall images was 0.93. The classification network achieved an accuracy of 0.802, class sensitivity of (pre-pubertal 0.78; pubertal 0.45; post-pubertal 0.98), respectively, per class specificity of (pre-pubertal 0.94; pubertal 0.94; post-pubertal 0.75), respectively. Conclusion:The developed algorithm showed the ability to determine the cervical vertebrae maturation stage which might aid in a faster diagnosis process by eliminating human intervention, which might lead to wrong decision-making procedures that might affect the outcome of the treatment plan. The developed algorithm proved reliable in determining the pre-pubertal and post-pubertal growth stages with high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.