Knowledge graph embedding methods learn continuous vector representations for entities in knowledge graphs and have been used successfully in a large number of applications. We present a novel and scalable paradigm for the computation of knowledge graph embeddings, which we dub PYKE. Our approach combines a physical model based on Hooke's law and its inverse with ideas from simulated annealing to compute embeddings for knowledge graphs efficiently. We prove that PYKE achieves a linear space complexity. While the time complexity for the initialization of our approach is quadratic, the time complexity of each of its iterations is linear in the size of the input knowledge graph. Hence, PYKE's overall runtime is close to linear. Consequently, our approach easily scales up to knowledge graphs containing millions of triples. We evaluate our approach against six state-of-the-art embedding approaches on the Drug-Bank and DBpedia datasets in two series of experiments. The first series shows that the cluster purity achieved by PYKE is up to 26% (absolute) better than that of the state of art. In addition, PYKE is more than 22 times faster than existing embedding solutions in the best case. The results of our second series of experiments show that PYKE is up to 23% (absolute) better than the state of art on the task of type prediction while maintaining its superior scalability. Our implementation and results are open-source and are available at http: //github.com/dice-group/PYKE.
Knowledge graph completion refers to predicting missing triples. Most approaches achieve this goal by predicting entities, given an entity and a relation. We predict missing triples via the relation prediction. To this end, we frame the relation prediction problem as a multi-label classification problem and propose a shallow neural model (SHALLOM) that accurately infers missing relations from entities. SHALLOM is analogous to C-BOW as both approaches predict a central token (p) given surrounding tokens ((s, o)). Our experiments indicate that SHAL-LOM outperforms state-of-the-art approaches on the FB15K-237 and WN18RR with margins of up to 3% and 8% (absolute), respectively, while requiring a maximum training time of 8 minutes on these datasets. We ensure the reproducibility of our results by providing an open-source implementation including training and evaluation scripts at https://github.com/dice-group/Shallom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.