The silica-rich supplementary cementitious materials (SCMs) are the key components of mechanical and microstructural properties. The use of SCMs results in improving the mechanical and microstructural properties and decreasing the environmental burden caused by cement production. In this regard, this paper reports a study to compare the influence of silica-rich supplementary cementitious materials (slag, fly ash, and bottom ash) having similar Blaine fineness on cement mortar composites in terms of mechanical and microstructural properties. First, supplementary cementitious materials (slag, fly ash, and bottom ash) were ground at similar cement Blaine fineness (~ 3300 cm2/g) and then by replacing 5% and 20% with cement, the 7-, 28-, 90-day mechanical and microstructural properties of cement mortar composites incorporating SCMs were examined. As a result, it was observed that the compressive strength and microstructural properties of cement mortar composites incorporating slag gave maximum strength and microstructural properties according to samples with fly ash and bottom ash having similar fineness and this will decrease the required amount of cement for the target properties by using slag, thus the number of CO2 emitted to nature will also decrease.
This study investigated the effect of the mechanical and durability properties of cementitious composite systems with supplementary cementitious materials (SCMs), including fly ash (FA), ground granulated blast furnace slag (GGBS), and bottom ash (BA), with similar specific surface areas (∼3,300 cm2/g). FA, GGBS, and BA were ground to a specific surface area of ∼3,300 cm2/g (about the cement-specific surface area) and then replaced with cement at 5 %, 10 %, 15 %, and 20 % replacement ratios. The compressive strength, flexural strength, length change, and rapid chloride ion permeability of the cementitious composites incorporating FA, GGBS, and BA with similar specific surface areas were recorded after 7-, 28-, and 90-day curing periods. As a result, cementitious composites containing GGBS improved the mechanical and durability properties at the maximum rate. It was shown that the properties of cementitious composites containing 20 % GGBS yielded better results than the control specimens without any SCMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.