Abstract. In the recent decades, a large data are stored by companies and organizations. In terms of use, big data will be useless if not processed into information according to the usability. The method used to process data into information is called data mining. The problem in data mining especially classification is data with a number of attributes that many and each attribute are irrelevant. This study proposes attribute weighting method using weight information gain method, then the attribute weights calculates the average value. Having calculated the average value of the attribute selection, the selected attributes are those with a value weights above average value. Attributes are selected then performed using an algorithm C4.5 classification, this method is named Average Weight Information Gain C4.5 (AWEIG-C4.5). The results show that AWEIG-C4.5 method is better than C4.5 method with the accuracy of the average value of each is 0.906 and 0.898.Keywords: data mining, high dimensional data, weight information gain, C4.5 algorithm Abstrak. Dalam beberapa dekade terakhir, data yang besar disimpan oleh perusahaan dan organisasi. Dari segi penggunaan, data besar tersebut akan menjadi tidak berguna jika tidak diolah menjadi informasi yang sesuai dengan kegunaan. Metode yang digunakan untuk mengolah data menjadi informasi adalah data mining. Masalah dalam data mining khususnya klasifikasi adalah data dengan jumlah atribut yang banyak atau dalam bahasa komputer disebut data berdimensi tinggi. Pada penelitian ini diusulkan metode pembobotan atribut menggunakan metode weight information gain, kemudian bobot atribut tersebut dihitung nilai rata-rata. Setelah dihitung nilai rata-rata dilakukan pemilihan atribut, atribut yang dipilih adalah atribut dengan nilai bobot di atas nilai rata-rata. Atribut yang terpilih kemudian dilakukan klasifikasi menggunakan algoritma C4.5, metode ini diberi nama Average Weight Information Gain C4.5 (AWEIG-C4.5). Hasil penelitian menunjukkan metode AWEIG-C4.5 lebih baik daripada metode C4.5 dengan nilai rata-rata akurasi masing-masing adalah 0,906 dan 0,898. Dari uji paired t-Test terdapat perbedaan signifikan antara metode AWEIG C4.5 dengan metode C4.5.Kata Kunci: data mining, data berdimensi tinggi, weight information gain, algoritma C4.5
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.