The presidential election is one of the political events that occur in Indonesia once in five years. Public satisfaction and dissatisfaction with political issues have led to an increase in the number of political opinion tweets. The purpose of this study is to examine the performance of the k-means and k-medoids method in the Twitter data and to tweet about the presidential election in 2019. The data used in this study are primary data taken from Muhyi's research (2019), then mining the text against data obtained. Because this data has been processed by Muhyi (2019) to analyze the electability of the 2019 presidential candidate pairs, for this journal needs a preprocessing was carried out to analyze the tendency of tweets to side with the candidate pairs of one or two. The difference in the pre-processing of this research with previous research is that there is a cleaning of duplicate data and normalizing. The results of this study indicate that the optimal number of clusters resulting from the k-means method and the k-medoid method are different.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.