The main function of small heat shock proteins (sHSPs) as molecular chaperones is to protect proteins from denaturation under adverse conditions. Molecular and physiological data were used to examine the sHSPs underlying cold-hardiness in Harmonia axyridis. Complementary DNA sequences were obtained for six H. axyridis sHSPs based on its transcriptome, and the expression of the genes coding for these sHSPs was evaluated by quantitative real-time PCR (qRT-PCR) in several developmental stages, under short-term cooling or heating conditions, and in black and yellow females of experimental and overwintering populations under low-temperature storage. In addition, we measured water content and the super cooling and freezing points (SCP and FP, respectively) of H. axyridis individuals from experimental and overwintering populations. The average water content was not significantly different between adults of both populations, but the SCP and FP of the overwintering population were significantly lower than that of the experimental population. Overall, the six sHSPs genes showed different expression patterns among developmental stages. In the short-term cooling treatment, Hsp16.25 and Hsp21.00 expressions first increased and then decreased, while Hsp10.87 and Hsp21.56 expressions increased during the entire process. Under short-term heating, the expressions of Hsp21.00, Hsp21.62, Hsp10.87, and Hsp16.25 showed an increasing trend, whereas Hsp36.77 first decreased and then increased. Under low-temperature storage conditions, the expression of Hsp36.77 decreased, while the expressions of Hsp21.00 and Hsp21.62 were higher than that of the control group in the experimental population. The expression of Hsp36.77 first increased and then decreased, whereas Hsp21.56 expression was always higher than that of the control group in the overwintering population. Thus, differences in sHSPs gene expression were correlated with the H. axyridis forms, suggesting that the mechanism of cold resistance might differ among them. Although, Hsp36.77, Hsp16.25, Hsp21.00, and Hsp21.62 regulated cold- hardiness, the only significant differences between overwintering and experimental populations were found for Hsp16.25 and Hsp21.00.
Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) is one of the pests that harm rice. In this paper, a new trehalose-6-phosphate synthase gene, TPS3, was identified by transcriptome sequencing and gene cloning. To explore its role in the energy metabolism of N. lugens we examined the carbohydrate contents at different stages of development, the tissue expression of TPS, and some physiological and biochemical indicators by injecting dsTPS3 and dsTPSs (a proportional mixture of dsTPS1, dsTPS2, and dsTPS3). The glucose content at the fifth instar was significantly higher than that in the fourth instar and the adult stages. The trehalose and glycogen contents before molting were higher than those after molting. TPS1, TPS2, and TPS3 were expressed in the head, leg, wing bud, and cuticle, with the highest expression in the wing bud. In addition, compared with the control group, the glucose content increased significantly at 48 h after RNA interference, and the trehalose content decreased significantly after 72 h. qRT-PCR showed that the expression level of UGPase decreased significantly at 48 h after injection, whereas GS expression increased significantly at 48 h after injecting dsTPS3. After dsTPS injection, the expression levels of PPGM2, UGPase, GP, and GS increased significantly at 72 h. After interfering with the expression of TPS3 gene alone, UGPase expression decreased significantly at 48 h, and GS expression increased significantly at 72 h. Finally, combined with the digital gene expression and pathway analysis, 1439 and 1346 genes were upregulated, and 2127 and 1927 genes were downregulated in the dsTPS3 and dsTPSs groups, respectively. The function of most differential genes was concentrated in sugar metabolism, lipid metabolism, and amino acid metabolism. The results indicated that TPS3 plays a key role in the energy metabolism of N. lugens and confirmed that TPS3 is a feasible target gene for RNA interference in N. lugens. Simultaneously, they provide a theoretical basis for the development and utilization of TPS3 to control pests.
Glutamine:fructose-6-phosphate aminotransferase (GFAT) and phosphofructokinase (PFK) are enzymes related to chitin metabolism. RNA interference (RNAi) technology was used to explore the role of these two enzyme genes in chitin metabolism. In this study, we found that GFAT and PFK were highly expressed in the wing bud of Nilaparvata lugens and were increased significantly during molting. RNAi of GFAT and PFK both caused severe malformation rates and mortality rates in N. lugens. GFAT inhibition also downregulated GFAT, GNPNA, PGM1, PGM2, UAP, CHS1, CHS1a, CHS1b, Cht1-10, and ENGase. PFK inhibition significantly downregulated GFAT; upregulated GNPNA, PGM2, UAP, Cht2-4, Cht6-7 at 48 h and then downregulated them at 72 h; upregulated Cht5, Cht8, Cht10, and ENGase; downregulated Cht9 at 48 h and then upregulated it at 72 h; and upregulated CHS1, CHS1a, and CHS1b. In conclusion, GFAT and PFK regulated chitin degradation and remodeling by regulating the expression of genes related to the chitin metabolism and exert opposite effects on these genes. These results may be beneficial to develop new chitin synthesis inhibitors for pest control.
Introduction:Spodoptera frugiperda is an omnivorous agricultural pest which is great dangerous for grain output.Methods: In order to investigate the effects of potential trehalase inhibitors, ZK-PI-5 and ZK-PI-9, on the growth and development of S. frugiperda, and to identify new avenues for S. frugiperda control, we measured the content of the trehalose, glucose, glycogen and chitin, enzyme activity, and gene expression levels in trehalose and chitin metabolism of S. frugiperda. Besides, their growth and development were also observed.Results: The results showed that ZK-PI-9 significantly reduced trehalase activity and ZK-PI-5 significantly reduced membraned-bound trehalase activity. Moreover, ZK-PI-5 inhibited the expression of SfTRE2, SfCHS2, and SfCHT, thus affecting the chitin metabolism. In addition, the mortality of S. frugiperda in pupal stage and eclosion stage increased significantly after treatment with ZK-PI-5 and ZK-PI-9, which affected their development stage and caused death phenotype (abnormal pupation and difficulty in breaking pupa).Discussion: These results have provided a theoretical basis for the application of trehalase inhibitors in the control of agricultural pests to promote future global grain yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.