BackgroundPlants play a pivotal role in soil stabilization, with above‐ground vegetation and roots combining to physically protect soil against erosion. It is possible that diverse plant communities boost root biomass, with knock‐on positive effects for soil stability, but these relationships are yet to be disentangled.QuestionWe hypothesize that soil erosion rates fall with increased plant species richness, and test explicitly how closely root biomass is associated with plant diversity.MethodsWe tested this hypothesis in salt marsh grasslands, dynamic ecosystems with a key role in flood protection. Using step‐wise regression, the influences of biotic (e.g. plant diversity) and abiotic variables on root biomass and soil stability were determined for salt marshes with two contrasting soil types: erosion‐resistant clay (Essex, southeast UK) and erosion‐prone sand (Morecambe Bay, northwest UK). A total of 132 (30‐cm depth) cores of natural marsh were extracted and exposed to lateral erosion by water in a re‐circulating flume.ResultsSoil erosion rates fell with increased plant species richness (R 2 = 0.55), when richness was modelled as a single explanatory variable, but was more important in erosion‐prone (R 2 = 0.44) than erosion‐resistant (R 2 = 0.18) regions. As plant species richness increased from two to nine species·m−2, the coefficient of variation in soil erosion rate decreased significantly (R 2 = 0.92). Plant species richness was a significant predictor of root biomass (R 2 = 0.22). Step‐wise regression showed that five key variables accounted for 80% of variation in soil erosion rate across regions. Clay‐silt fraction and soil carbon stock were linked to lower rates, contributing 24% and 31%, respectively, to variation in erosion rate. In regional analysis, abiotic factors declined in importance, with root biomass explaining 25% of variation. Plant diversity explained 12% of variation in the erosion‐prone sandy region.ConclusionOur study indicates that soil stabilization and root biomass are positively associated with plant diversity. Diversity effects are more pronounced in biogeographical contexts where soils are erosion‐prone (sandy, low organic content), suggesting that the pervasive influence of biodiversity on environmental processes also applies to the ecosystem service of erosion protection.
Salt marshes often undergo rapid changes in lateral extent, the causes of which lack common explanation. We combine hydrological, sedimentological, and climatological data with analysis of historical maps and photographs to show that long-term patterns of lateral marsh change can be explained by large-scale variation in sediment supply and its wave-driven transport. Over 150 years, northern marshes in Great Britain expanded while most southern marshes eroded. The cause for this pattern was a north to south reduction in sediment flux and fetch-driven wave sediment resuspension and transport. Our study provides long-term and large-scale evidence that sediment supply is a critical regulator of lateral marsh dynamics. Current global declines in sediment flux to the coast are likely to diminish the resilience of salt marshes and other sedimentary ecosystems to sea level rise. Managing sediment supply is not common place but may be critical to mitigating coastal impacts from climate change.Plain Language Summary Salt marshes are valuable ecosystems for human societies and are especially vulnerable to losses caused by human activity and climate change. Little is known about how the size of marshes has changed in response to disturbance over large-and long-term scales. We used historical maps and aerial photographs to capture 150 years of change in marsh area extent in 25 estuaries and ca. 100 marshes across Great Britain. We then related the rates of marsh change to existing data on hydrology, biology, climate, sediment supply, and other variables, to find out which elements best explained patterns of erosion and expansion for the period between 1967 and 2016. We found a shift from long-term marsh erosion in the southeast to long-term marsh expansion in the northwest of Great Britain. This pattern was explained by a south-to-north gradient of increasing sediment flux into marshes and wave fetch lengths which helps transport sediment onto marshes. Our study demonstrates how sediment supply should be monitored and managed to preserve salt marsh extent into the future.
Abstract. Carbon stored in coastal wetland ecosystems is of global relevance to climate regulation. Broadscale inventories of this “blue” carbon store are currently lacking and labour intensive. Sampling 23 salt marshes in the United Kingdom, we developed a Saltmarsh Carbon Stock Predictor (SCSP) with the capacity to predict up to 44 % of spatial variation in surface soil organic carbon (SOC) stock (0–10 cm) from simple observations of plant community and soil type. Classification of soils into two types (sandy or not-sandy) explained 32 % of variation in SOC stock. Plant community type (five vegetation classes) explained 37 % of variation. Combined information on soil and plant community types explained 44 % of variation in SOC stock. GIS maps of surface SOC stock were produced for all salt marshes in Wales (∼4000 ha), using existing soil maps and governmental vegetation data and demonstrating the application of the SCSP for large-scale predictions of blue carbon stores and the use of plant community traits for predicting ecosystem services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.