The essential oils (EOs) derived from aromatic plants such as Piper species are considered to play a role in alleviating neuronal ailments that are associated with inhibition of acetylcholinesterase (AChE). The chemical compositions of 23 EOs prepared from 16 Piper spp. were analyzed by both gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 76 compounds were identified in the EOs from the leaves and stems of 19 samples, while 30 compounds were detected in the EOs from the fruits of four samples. Sesquiterpenes and phenylpropanoids were found to be rich in these EOs, of which asaricin, caryophyllene, caryophyllene oxide, isospathulenol, (+)-spathulenol, and β-bisabolene are the major constituents. The EOs from the leaves and stems of Piper austrosinense, P. puberulum, P. flaviflorum, P. betle, and P. hispidimervium showed strong AChE inhibitory activity with IC values in the range of 1.51 to 13.9 mg/mL. A thin-layer chromatography (TLC) bioautography assay was employed to identify active compound(s) in the most active EO from P. hispidimervium. The active compound was isolated and identified as asaricin, which gave an IC value of 0.44 ± 0.02 mg/mL against AChE, comparable to galantamine with an IC 0.15 ± 0.01 mg/mL.
The genus Piper is one of the largest genera in the Piperaceae, with most species widely distributed globally, covering all continents. To date, many Piper species have been scientifically investigated for their chemical diversities and interesting broad spectrum of bioactivities, including central nervous system (CNS), pesticidal, antifungal and antibacterial effects. This review systematically summarizes the scaffolds of the alkaloids reported, the major chemicals isolated from Piper spp., and their biological activities. Besides the alkaloids, some neolignans with rearranged skeletons show structural diversities, while the chalcones, flavonoids and kava-pyrones have some potential activities. Herein, the sesquiterpenes and phenolic compounds from Piper species and their bioactivities are also surveyed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.