When Cercis chinensis seedlings suffered from drought treatment, net photosynthetic rates had been significantly reduced at the end of the drought treatment. Compared with the control, the activities of acid invertases in roots had increased 5 and 11 days after drought treatment. Seventeen days after drought treatment, the activities of acid invertases in roots were significantly decreased, while activities of alkaline invertases in roots had also been significantly reduced. As the moisture in culture media decreased, so the activities of sucrose synthases in leaves decreased slightly. In roots, their activities had significantly increased 5 and 11 days after drought treatment. The contents of fructose in roots reduced as the moisture in culture media decreased and 11 and 17 days after drought treatment the reduction was significant. The content of glucose in roots clearly did not change as drought stress occurred further, but was still less than that in the control seedlings. Similarly, the content of sucrose reduced as the moisture in culture media decreased. At the beginning of the drought stress, the content of sucrose was significantly higher than that in the control and afterwards there were no differences between drought-treated seedlings and the control. The gradient of the sucrose content between leaves and roots was 0.0982 mg·g -1 FW 17 days after drought treatment, while the gradient of the seedlings under normal condition was 1.3832 mg·g -1 FW. The sucrose concentration gradient reduced by 92.9%. The reduction in the sucrose content gradient under drought stress decreased the sucrose partitioning in roots. Therefore, our results support the hypothesis of 'shared control'.
In natural ecosystems, nutrition available for plants shows great spatial heterogeneity. Much is known about plant root responses to the spatial heterogeneity of nutrition, but little is known about carbon usage in roots in nutrition-deficient patches and its effect on root longevity. In this study, split-room boxes were used for culture of Cercis chinensis seedlings, and the small rooms were supplied with different nutrition levels. The number of the first-order roots in the rooms with nutrition supply was significantly higher than that in the rooms with deficient nutrition. Specific root length (SRL) of the first-order roots in the rooms with deficient nutrition reached its peak at day 64 after nutrition treatment. There was no significant SRL differences between the two order roots during the experiment. Biomass of the first-order roots in the rooms without nutrition supply was significantly less than that of the first-order roots in the rooms with nutrition supply from day 64 to 96. The total biomass of the lateral roots in the rooms without nutrition supply decreased from day 64 to 96. The activities of the enzymes in roots in the rooms without nutrition supply increased and the activities of alkaline invertases in roots in the two sides of split box did not change significantly. The activities of the enzymes in roots in the rooms without nutrition supply increased gradually. These results suggest that nutrition spatial heterogeneity induced the changes in root traits and plants actively controlled carbon usage in roots in nutrition-deficient patches by regulating the activities of invertases and sucrose synthases, resulting in the reduction in carbon usage in the roots in nutrition-deficient patches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.