Congenital diaphragmatic hernia (CDH) is a common congenital malformation associated with high mortality rates, mainly due to pulmonary hypoplasia and persistent pulmonary hypertension following birth. The present study aimed to investigate abnormal lung development in a rat CDH model, and examine temporal and spatial changes in the expression of ephrin type-B receptor 4 (EPHB4) and ephrin-B2 (EFNB2) during fetal lung development, to elucidate the role of these factors during lung morphogenesis. Pregnant rats received nitrofen on embryonic day (E) 8.5 to induce CDH, and fetal lungs were collected on E13.5, E15.5, E17.5, E19.5, and E21.5. The mean linear intercept (MLI) and mean alveolar number (MAN) were observed in fetal lung tissue at E21.5 following hematoxylin and eosin staining. E13.5 fetal lungs were cultured for 96 h in serum-free medium and branch development was observed under a microscope. The gene and protein expression levels of EPHB4 and EFNB2 were assessed by reverse transcription-quantitative polymerase chain reaction analysis, and immunoblotting and immunohistochemistry, respectively. The fetal rat lungs were treated with EFNB2 and the activity of key signaling pathways was assessed. The lung index (lung weight/body weight) at E21.5 was significantly lower in the CDH rats, compared with that in the control fetal rats. The MLI and MAN were also lower in the CDH group. The number of lung terminal buds at E13.5 (embryonic stage), and the lung-explant perimeter and surface were all smaller in the CDH group rats than in the control group at the same age. Pulmonary hypoplasia was observed following 96 h of in vitro culture. No significant differences were found in the expression levels of EFNB2 and EPHB4 between the CDH and control groups at E13.5 (embryonic stage) or E15.5 (pseudoglandular stage), however, EFNB2 and EPHB4 were significantly upregulated at E17.5 (canalicular stage), and at E19.5 and E21.5 (saccular/alveolar stages). EFNB2 stimulated pulmonary branching and EFNB2 supplementation decreased the activity of p38, c-Jun NH2-terminal kinase, extracellular signal-regulated kinase, and signal transducer and activator of transcription. The CDH fetal rats developed pulmonary dysplasia at an early stage of fetal pulmonary development. Upregulated expression of EFNB2 and EPHB4 was observed in the rat lung of nitrofen-induced CDH, and the increased expression of EFNB2 promoted rat lung development in the nitrofen-induced CDH model.
Human embryonic stem cell (hESC) lines are traditionally derived through immunosurgery. Their maintenance in culture requires the presence of mouse embryonic fibroblasts (MEFs) as feeder cells and media supplemented with basic fibroblast growth factor (bFGF) or other growth factors-both of which might introduce animal-derived culture components. The drawbacks associated with immunosurgery, MEF co-culture, and the cost of growth factors necessitate the exploration of a xeno-free method to maintain the self-renewal capacity of hESCs. Here, we describe an isolation method for the human inner cell mass (ICM), which was then cultured in the absence of exogenous growth factors and in the presence of human foreskin fibroblasts (HFFs) as feeder cells. Three hESC lines were obtained from poor-quality embryos by this near-xeno-free protocol. After culturing for more than 10 months, the hESCs retained normal morphology, expressed all expected cell surface markers, could differentiate to embryoid bodies upon culture in vitro, and formed teratomas in vivo. Furthermore, secretion of bFGF by HFFs was observed. In conclusion, this is the first study to describe an inexpensive, xeno-free culture system for the isolation and maintenance of hESCs that does not require bFGF supplementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.