Automated anesthesia promises to enable more precise and personalized anesthetic administration and free anesthesiologists from repetitive tasks, allowing them to focus on the most critical aspects of a patient's surgical care. Current research has typically focused on creating simulated environments from which agents can learn. These approaches have demonstrated good experimental results, but are still far from clinical application. In this paper, Policy Constraint Q-Learning (PCQL), a data-driven reinforcement learning algorithm for solving the problem of learning anesthesia strategies on real clinical datasets, is proposed. Conservative Q-Learning was first introduced to alleviate the problem of Q function overestimation in an offline context. A policy constraint term is added to agent training to keep the policy distribution of the agent and the anesthesiologist consistent to ensure safer decisions made by the agent in anesthesia scenarios. The effectiveness of PCQL was validated by extensive experiments on a real clinical anesthesia dataset. Experimental results showthat PCQL is predicted to achieve higher gains than the baseline approach while maintaining good agreement with the reference dose given by the anesthesiologist, using less total dose, and being more responsive to the patient's vital signs. In addition, the confidence intervals of the agent were investigated, which were able to cover most of the clinical decisions of the anesthesiologist. Finally, an interpretable method, SHAP, was used to analyze the contributing components of the model predictions to increase the transparency of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.