The purpose of this study was to investigate the vibrational properties and corresponding anisotropicity in wood during different states of moisture sorption. Samples of maple (Acer spp.) and red oak (Quercus rubra Michx.f.) were moisture conditioned by the adsorption process from an ovendried state and by the desorption process from a water-saturated state. The dynamic modulus of elasticity (DMOE) and logarithmic decrement (δ) were examined as a function of grain orientation during moisture change processes and under constant moisture contents (MC). It was observed that regardless of species and grain direction, the DMOE and δ were lower and higher, respectively, during the moisture change process compared with those measured without a change in MC. The increase in δ value during adsorption was greater than that during desorption. These results suggest that wood in an unstable state shows lower elasticity and strength and higher damping properties than wood in an equilibrium state. Furthermore, results of this study demonstrate that a greater adsorption rate leads to greater destabilization during an adsorption process. The anisotropy in vibrational properties was found to vary between two species.
The vibrational properties of Chinese fir (Cunninghamia lanceolata) wood were investigated in this study as a function of changes in moisture content (MC) and grain direction. The dynamic modulus of elasticity (DMOE) and logarithmic decrement (δ) were examined using a cantilever beam vibration testing apparatus. It was observed that DMOE and δ of wood varied widely during moisture adsorption and desorption. The DMOE of wood conditioned by the adsorption process showed significant increases during the later stages of conditioning when the MC scarcely changed. However, with the desorption process, the DMOE did not increase as much during the later stages of conditioning, though they increased during the early stages of conditioning when the MC greatly decreased. These results suggest that wood in an unstable state, caused via the existing state of moisture, shows different vibrational behaviors. Furthermore, the parallel to grain direction showed much higher DMOE and lower δ when compared to the perpendicular to grain direction. The variation of vibrational properties between parallel and perpendicular to grain direction under constant MC and during moisture adsorption process could be attributed due to the microscopic, macroscopic molecular, as well as chemical constituents of wood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.