The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.
The abscission process is initiated by changes in the auxin gradient across the abscission zone (AZ) and is triggered by ethylene. Although changes in gene expression have been correlated with the ethylene-mediated execution of abscission, there is almost no information on the molecular and biochemical basis of the increased AZ sensitivity to ethylene. We examined transcriptome changes in the tomato (Solanum lycopersicum 'Shiran 1335') flower AZ during the rapid acquisition of ethylene sensitivity following flower removal, which depletes the AZ from auxin, with or without preexposure to 1-methylcyclopropene or application of indole-3-acetic acid after flower removal. Microarray analysis using the Affymetrix Tomato GeneChip revealed changes in expression, occurring prior to and during pedicel abscission, of many genes with possible regulatory functions. They included a range of auxin-and ethylene-related transcription factors, other transcription factors and regulatory genes that are transiently induced early, 2 h after flower removal, and a set of novel AZ-specific genes. All gene expressions initiated by flower removal and leading to pedicel abscission were inhibited by indole-3-acetic acid application, while 1-methylcyclopropene pretreatment inhibited only the ethylene-induced expressions, including those induced by woundassociated ethylene signals. These results confirm our hypothesis that acquisition of ethylene sensitivity in the AZ is associated with altered expression of auxin-regulated genes resulting from auxin depletion. Our results shed light on the regulatory control of abscission at the molecular level and further expand our knowledge of auxin-ethylene cross talk during the initial controlling stages of the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.