Background: The identification of meaningful biomarkers of tuberculosis (TB) has potential to improve diagnosis, disease staging and prediction of treatment outcomes. It has been shown that active pulmonary TB (PTB) is associated with qualitative and quantitative changes in systemic immune profile, suggesting a chronic inflammatory imbalance. Here we characterized the profile of PTB and extrapulmonary TB (EPTB) in a prospective cohort study. Methods: We measured a panel of 27 inflammatory cytokines, soluble receptors, and lipid mediators in peripheral blood from patients with PTB or EPTB from a prospective clinical study in China. Multidimensional analyses were performed to describe associations between plasma levels of biomarkers and different TB disease presentation profiles. Results: Mycobacterium tuberculosis infection induced changes in both the expression and correlation profiles of plasma mediators of inflammation in patients with PTB compared to those with EPTB. Increases in mycobacterial loads in sputum smears were associated with rises in concentrations of several molecules involved in TB pathogenesis, such as IL-1β, IFN-α, IL-10 and PGF2α. Moreover, PTB patients presenting with severe disease exhibited a distinct inflammatory profile hallmarked by heightened levels of TNF-α, IL-1β, IL17, IL-18 and IL-27. Interestingly, while antitubercular treatment (ATT) resulted in early changes of plasma concentrations of markers in PTB, changes were delayed in EPTB patients. Exploratory analyses of the molecular degree of perturbation (MDP) of the inflammatory mediators before and during ATT suggested the occurrence of infection
Boosting immune cell function by targeting the coinhibitory receptor PD-1 may have applications in the treatment of chronic infections. Here, we examine the role of PD-1 during Mycobacterium tuberculosis (Mtb) infection of rhesus macaques. Animals treated with anti–PD-1 monoclonal antibody developed worse disease and higher granuloma bacterial loads compared with isotype control–treated monkeys. PD-1 blockade increased the number and functionality of granuloma Mtb-specific CD8 T cells. In contrast, Mtb-specific CD4 T cells in anti–PD-1–treated macaques were not increased in number or function in granulomas, expressed increased levels of CTLA-4, and exhibited reduced intralesional trafficking in live imaging studies. In granulomas of anti–PD-1–treated animals, multiple proinflammatory cytokines were elevated, and more cytokines correlated with bacterial loads, leading to the identification of a role for caspase 1 in the exacerbation of tuberculosis after PD-1 blockade. Last, increased Mtb bacterial loads after PD-1 blockade were found to associate with the composition of the intestinal microbiota before infection in individual macaques. Therefore, PD-1–mediated coinhibition is required for control of Mtb infection in macaques, perhaps because of its role in dampening detrimental inflammation and allowing for normal CD4 T cell responses.
Background Diagnosis of active tuberculosis (ATB) currently relies on detection of M. tuberculosis (Mtb). Identifying patients with extrapulmonary TB (EPTB) remains challenging because microbiological confirmation is often not possible. Highly accurate blood-based tests could improve diagnosis of both EPTB and pulmonary TB (PTB), and timely initiation of anti-TB therapy. Methods A case-control study was performed using discriminant analyses to validate an approach using Mtb-specific CD4+T-cell activation markers in blood to discriminate PTB and EPTB from latent TB infection (LTBI) as well as EPTB from PTB in 270 Brazilian individuals. We further tested the effect of HIV co-infection on diagnostic performance. Frequencies of IFNγ+CD4+T-cells expressing CD38, HLADR, and/or Ki67 were assessed by flow cytometry. Results EPTB and PTB were associated with higher frequencies of CD4+T-cells expressing CD38, HLADR or Ki67 compared to LTBI (all p-values < .001). Moreover, frequencies of HLADR+ (p= .03) or Ki67+ (p< .001) cells accurately distinguished EPTB from PTB. HIV infection did not affect the capacity of these markers to distinguish ATB from LTBI or EPTB from PTB. Conclusion Cell activation markers in Mtb-specific CD4+T-cells distinguished ATB from LTBI, and EPTB from PTB, regardless of HIV infection status. These parameters provide an attractive approach for developing blood-based diagnostic tests for both active and latent TB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.