The neutral beam injection (NBI) system was developed on the Experimental Advanced Superconducting Tokamak (EAST) for plasma heating and current driving. This paper presents the brief history, design, development, and the main experimental results of the R&D of neutral beam injector on the test bed and on EAST. In particular, it will describe: (1) how the two beamlines with a total beam power of 8 MW were developed; (2) the design of the EAST-NBI system including the high power ion source, main vacuum chamber, inner components, beam diagnostic system and sub-system; (3) the experimental results of beamline-1 on the summer campaign of EAST in 2014 and, (4) the status of beamline-2 and the future plan of EAST-NBIs.
Neutral beam injector for EAST is designed to deliver deuterium beams with a power of 2 MW to 4 MW at an energy of 50 keV to 80 keV into the plasma with a beam dimension of 12 cm × 48 cm. Considering the beam generation and transmission, a columniform beam-line of Φ 250 cm × 400 cm is designed with a neutralizer, ion dump, calorimeter, bending magnet and cryopanels. The arrangement of the internal elements for the beam-line is reported. A rectangular sleeve coupled to the ion source is employed as the neutralizer. At the downstream of the neutralizer, a dipole magnet separates the residual ions from the beam passage with a reflection radius of 42 cm for the full energy particles. The calorimeter and the ion dump serve as high heat flux components, which will work as thermal inertia targets in the first phase of operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.