In the last few years, long-pulse H-mode plasma discharges (with small edge-localized modes and normalized beta, β N ~ 1) have been realized at the Experimental Advanced Superconducting Tokamak (EAST). This paper reports on high-β N (>1.5) discharges in the 2015 EAST campaign. The characteristics of these H-mode plasmas have been presented in a database. Analysis of the experimental limit of β N has revealed several main features of typical discharges. Firstly, efficient, stable high heating power is required. Secondly, control of impurity radiation (partly due to interaction between the plasma and the in-vessel components) is also a critical issue for the maintenance of high-β N discharges. In addition an internal transport barrier (ITB) has recently been observed in EAST, introducing further improvement in confinement surpassing H-mode plasmas. ITB dynamics is another key issue for high-β N plasmas in EAST. Each of these features is discussed in this paper. Study and improvement of these issues could be considered as the key to achieving long-pulse high-β N operation with EAST.
The neutral beam injection (NBI) system was developed on the Experimental Advanced Superconducting Tokamak (EAST) for plasma heating and current driving. This paper presents the brief history, design, development, and the main experimental results of the R&D of neutral beam injector on the test bed and on EAST. In particular, it will describe: (1) how the two beamlines with a total beam power of 8 MW were developed; (2) the design of the EAST-NBI system including the high power ion source, main vacuum chamber, inner components, beam diagnostic system and sub-system; (3) the experimental results of beamline-1 on the summer campaign of EAST in 2014 and, (4) the status of beamline-2 and the future plan of EAST-NBIs.
Neutral beam injection (NBI) system with two neutral beam injections will be constructed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non-inductive current drive. Each NBI can deliver 2∼4 MW beam power with 50∼80 keV beam energy in 10∼100 s pulse length. Each elements of the NBI system are presented in this contribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.