Stretchable ionotronics have drawn increasing attention during the past decade, enabling myriad applications in engineering and biomedicine. However, existing ionotronic sensors suffer from limited sensing capabilities due to simple device structures and poor stability due to the leakage of ingredients. In this study, we rationally design and fabricate a plethora of architected leakage-free ionotronic sensors with multi-mode sensing capabilities, using DLP-based 3D printing and a polyelectrolyte elastomer. We synthesize a photo-polymerizable ionic monomer for the polyelectrolyte elastomer, which is stretchable, transparent, ionically conductive, thermally stable, and leakage-resistant. The printed sensors possess robust interfaces and extraordinary long-term stability. The multi-material 3D printing allows high flexibility in structural design, enabling the sensing of tension, compression, shear, and torsion, with on-demand tailorable sensitivities through elaborate programming of device architectures. Furthermore, we fabricate integrated ionotronic sensors that can perceive different mechanical stimuli simultaneously without mutual signal interferences. We demonstrate a sensing kit consisting of four shear sensors and one compressive sensor, and connect it to a remote-control system that is programmed to wirelessly control the flight of a drone. Multi-material 3D printing of leakage-free polyelectrolyte elastomers paves new avenues for manufacturing stretchable ionotronics by resolving the deficiencies of stability and functionalities simultaneously.
Eutectogels are stretchable ionic conductors extensively developed in recent years, owing to their distinct advantages of low cost, non-volatility, non-toxicity, and outstanding biocompatibility. However, the susceptibility to humidity caused by...
The emergence of hydrophobic ionogels composed of hydrophobic polymer matrices and hydrophobic ionic liquids has drastically broadened the applications of ionic devices, especially for underwater explorations. Compared with traditional ionogels, hydrophobic ones are capable of achieving long‐term stability in ambient and aqueous environments. In this review, the latest research developments of intrinsically hydrophobic ionogels are summarized, with particular emphases placed on the materials, mechanisms and applications. The basic issues about hydrophobic ionogels, including the material systems, dynamic gelation bonds and network structures are elucidated. The up‐to‐date advent of the ambient/underwater applications of hydrophobic ionogels concerning adhesion, self‐healing, and sensing are comprehensively summarized. Special attention is paid to underwater scenarios considering the rapid development of marine explorations and the intrinsic properties of hydrophobic ionogels. Finally, the current challenges and immediate opportunities of this emerging yet fast‐developing research field are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.