The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.
Model management is an essential component in data-driven surrogate-assisted evolutionary optimization. In model management, the solutions with a large degree of uncertainty in approximation play an important role. They can strengthen the exploration ability of algorithms and improve the accuracy of surrogates. However, there is no a theoretical method to measure the uncertainty of prediction of Non-Gaussian process surrogates. To address this issue, this paper proposes a method to measure the uncertainty. In this method, a stationary random field with a known zero mean is used to measure the uncertainty of prediction of Non-Gaussian process surrogates. Based on experimental analyses, this method is able to measure the uncertainty of prediction of Non-Gaussian process surrogates. The method's effectiveness is demonstrated on a set of benchmark problems in single surrogate and ensemble surrogates cases.
Most evolutionary optimization algorithms have already been used for antenna design and shown promising results on improving the performance of the antenna. However, for many real-world antenna optimization problems, they are difficult to solve in that there are highly constrained and multimodal difficulty. These difficulties impede the development of antenna design. In this paper, an elliptical slot microstrip patch antenna design with these difficulties is modeled as a constrained optimization problem (COP). To address the problem, a Dynamic Constrained Multiobjective Optimization Evolutionary Algorithm(DCMOEA) is used. The experimental results show that the optimum antenna with satisfying the design requirement is obtained, and as well as we find the radiation patch should be a whole ellipse instead of subtracting with two ellipses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.