A general survey is provided on the capability of Monte Carlo (MC) modeling in tissue optics while paying special attention to the recent progress in the development of methods for speeding up MC simulations. The principles of MC modeling for the simulation of light transport in tissues, which includes the general procedure of tracking an individual photon packet, common light-tissue interactions that can be simulated, frequently used tissue models, common contact/noncontact illumination and detection setups, and the treatment of time-resolved and frequency-domain optical measurements, are briefly described to help interested readers achieve a quick start. Following that, a variety of methods for speeding up MC simulations, which includes scaling methods, perturbation methods, hybrid methods, variance reduction techniques, parallel computation, and special methods for fluorescence simulations, as well as their respective advantages and disadvantages are discussed. Then the applications of MC methods in tissue optics, laser Doppler flowmetry, photodynamic therapy, optical coherence tomography, and diffuse optical tomography are briefly surveyed. Finally, the potential directions for the future development of the MC method in tissue optics are discussed.
While the demand for metabolic imaging has increased in recent years, simultaneous in vivo measurement of multiple metabolic endpoints remains challenging. Here we report on a novel technique that provides in vivo high-resolution simultaneous imaging of glucose uptake and mitochondrial metabolism within a dynamic tissue microenvironment. Two indicators were leveraged; 2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) reports on glucose uptake and Tetramethylrhodamine ethyl ester (TMRE) reports on mitochondrial membrane potential. Although we demonstrated that there was neither optical nor chemical crosstalk between 2-NBDG and TMRE, TMRE uptake was significantly inhibited by simultaneous injection with 2-NBDG in vivo. A staggered delivery scheme of the two agents (TMRE injection was followed by 2-NBDG injection after a 10-minute delay) permitted near-simultaneous in vivo microscopy of 2-NBDG and TMRE at the same tissue site by mitigating the interference of 2-NBDG with normal glucose usage. The staggered delivery strategy was evaluated under both normoxic and hypoxic conditions in normal tissues as well as in a murine breast cancer model. The results were consistent with those expected for independent imaging of 2-NBDG and TMRE. This optical imaging technique allows for monitoring of key metabolic endpoints with the unique benefit of repeated, non-destructive imaging within an intact microenvironment.
We investigate the potentials of digitally sampling scintillation pulses techniques for positron emission tomography (PET) in this paper, focusing on the determination of the event time. We have built, and continue building, a digital library of PET event waveforms generated with various combinations of photo-detectors and scintillator materials, with various crystal sizes. Events in this digital library are obtained at a high sampling of 20 GSps (Giga-samples per second) so that their waveforms are recorded with high accuracy. To explore the potential advantages of digitally sampling scintillation pulses, we employ a dataset in the above-mentioned library to evaluate two methods for digitizing the event pulses and linear interpolation techniques to analyze the resulting digital samples. Our results show that the two digitization methods that we studied can yield a coincidence timing resolution of about 300 ps FWHM when applied to events generated by a pair of LSO + PMT detector units. This timing resolution is comparable with that is achieved by the same detector pair with a constant fraction discriminator (CFD). As a benchmark, regular-time sampling (RTS) method, usually implemented with very fast traditional analog-to-digital converters (ADCs) for digitizing scintillation pulses, is not feasible for a multi-channel system like a PET system. Digitizing NIH Public Access
Many cancers adeptly modulate metabolism to thrive in fluctuating oxygen conditions; however, current tools fail to image metabolic and vascular endpoints at spatial resolutions needed to visualize these adaptations in vivo. We demonstrate a high-resolution intravital microscopy technique to quantify glucose uptake, mitochondrial membrane potential (MMP), and SO2 to characterize the in vivo phentoypes of three distinct murine breast cancer lines. Tetramethyl rhodamine, ethyl ester (TMRE) was thoroughly validated to report on MMP in normal and tumor-bearing mice. Imaging MMP or glucose uptake together with vascular endpoints revealed that metastatic 4T1 tumors maintained increased glucose uptake across all SO2 (“Warburg effect”), and also showed increased MMP relative to normal tissue. Non-metastatic 67NR and 4T07 tumor lines both displayed increased MMP, but comparable glucose uptake, relative to normal tissue. The 4T1 peritumoral areas also showed a significant glycolytic shift relative to the tumor regions. During a hypoxic stress test, 4T1 tumors showed significant increases in MMP with corresponding significant drops in SO2, indicative of intensified mitochondrial metabolism. Conversely, 4T07 and 67NR tumors shifted toward glycolysis during hypoxia. Our findings underscore the importance of imaging metabolic endpoints within the context of a living microenvironment to gain insight into a tumor’s adaptive behavior.
The shifting metabolic landscape of aggressive tumors, with fluctuating oxygenation conditions and temporal changes in glycolysis and mitochondrial metabolism, is a critical phenomenon to study in order to understand negative treatment outcomes. Recently, we have demonstrated near-simultaneous optical imaging of mitochondrial membrane potential (MMP) and glucose uptake in non-tumor window chambers, using the fluorescent probes tetramethylrhodamine ethyl ester (TMRE) and 2-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). Here, we demonstrate a complementary technique to perform near-simultaneous optical spectroscopy of tissue vascular parameters, glucose uptake, and MMP in a solid tumor model that is most often used for therapeutic studies. Our study demonstrates the potential of optical spectroscopy as an effective tool to quantify the vascular and metabolic characteristics of a tumor, which is an important step towards understanding the mechanisms underlying cancer progression, metastasis, and resistance to therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.