The intensity of human activity, habitat loss and habitat degradation have significant impacts on biodiversity. Habitat quality plays an important role in spatial dynamics when evaluating fragmented landscapes and the effectiveness of biodiversity conservation. This study aimed to evaluate the status and characteristic variation in habitat quality to analyze the underlying factors affecting habitat quality in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA). Here, we applied Kendall’s rank correlation method to calculate the sensitivity of habitat types to threat factors for the Integrated Valuation of Ecosystem Services and Tradeoffs habitat quality (InVEST-HQ) model. The spatiotemporal variation in habitat quality of the GBA in the period 1995–2015 was estimated based on the InVEST-HQ model. We analyzed the characteristic habitat quality using different ecosystem classifications and at different elevation gradients. Fractional vegetation cover, the proportion of impervious surface, population distribution and gross domestic product were included as the effect factors for habitat quality. The correlation between the effect factors and habitat quality was analyzed using Pearson’s correlation tests. The results showed that the spatial pattern of habitat quality decreased from fringe areas to central areas in the GBA, that the forest ecosystem had the highest value of habitat quality, and that habitat quality increased with elevation. In the period from 1995 to 2015, habitat quality declined markedly and this could be related to vegetation loss, land use change and intensity of human activity. Built-up land expansion and forest land fragmentation were clear markers of land use change. This study has great significance as an operational approach to mitigating the tradeoff between natural environment conservation and rapid economic development.
The interaction between urbanization and the eco-environment is usually viewed as an effect–feedback framework. Its coupling system is composed of urbanization and eco-environment subsystems. In this paper, the coupling degree (CD) and the coupling coordinated degree (CCD) are used to reflect the coupling interaction and coupling coordination between the urbanization subsystem and the eco-environment subsystem. Based on the dynamic relative quantities of urbanization and eco-environment data in the Pearl River Delta, CD and CCD values were calculated, and the spatiotemporal evolution trend of coordination was analyzed. The results show that (1) from 2000 to 2015, the nine cities in the Pearl River Delta had high CD values and CCD values. Though they had different performances in different periods, they were all in a coordinated class, including good coordination (GC), moderate coordination (MC), and bare coordination (BC). (2) In terms of temporal evolution, the coupling coordination between urbanization and the eco-environment in the entire Pearl River Delta greatly improved. (3) From the perspective of spatial distribution, the coupling coordination of the central region was higher than that of the peripheral regions, and that of the west bank of the Pearl River was higher than that of the east bank of the Pearl River. These results can help local policy makers enact appropriate measures for sustainable development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.