This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Thinning is an important silvicultural practice for improving the productivity and wood production in plantation forest. Different intensities of thinning management can affect tree growth and alter soil nutrient effectiveness, thus affecting soil fungal community structure and diversity. Our objective is to determine the soil factors and their regulatory mechanisms that influence stand growth by thinning, and to provide data to support the establishment of large diameter timber cultivation technology for Picea koraiensis. In this study, we conducted medium- and high-intensity thinning in 43a P. koraiensis plantation middle-aged forests and investigated the growth indexes, soil physicochemical properties, and fungal community diversity in rhizosphere and non-rhizosphere soils of the stands after thinning at different densities (904 plants/ha for control, 644 plants/ha for 30% thinning intensity, and 477 plants/ha for 50% thinning intensity). The results showed that all growth indicators (annual growth of tree height, diameter at breast height, height under live branches and crown width) of the plantation after high-intensity thinning (477 plants/ha) were higher than those of the control (no thinning, significant) and medium-intensity thinning (644 plants/ha). Mycorrhizal infection rate was higher at the beginning of the growing season than at the end of the growing season, and increased slightly with decreasing stand density. Compared to the control, all medium- and high-intensity thinning treatments significantly improved soil nutrient content (P < 0.05), including total carbon, total nitrogen, total phosphorus, total potassium, Available phosphorus and Available potassium. Fungal diversity was higher but lower in abundance than the control in both rhizosphere and non-rhizosphere soils after thinning. The number of OTUs and fungal richness and diversity indices of non-rhizosphere soil fungi were higher than those of rhizosphere soil fungi. In conclusion, this study provides new evidence that reasonable intercalation can increase the radial and vertical growth of P. koraiensis plantation forests and promote the diversity of subsurface soil fungal communities. It is shown that thinning intensity regulates biogeochemical cycles in P. koraiensis plantation ecosystems by affecting soil nutrients and fungal community structure. Therefore, 50% thinning intensity can be used to increase timber production in plantation forests during large diameter timber cultivation of P. koraiensis and improve predictions associated with achieving long-term forest management strategies.
To understand the effect of seasonal variations on soil microbial communities in a forested wetland ecotone, here, we investigated the dynamics of the diversities and functions of both soil bacterial and fungal communities inhabiting three wetland types (forested wetland, shrub wetland and herbaceous vegetation wetland) from forest-wetland ecotone of northern Xiaoxing’an Mountains spanning different seasons. β-diversity of soil microbial communities varied significantly among different vegetation types (Betula platyphylla–Larix gmelinii, Alnus sibirica, Betula ovalifolia, and Carex schmidtii wetlands). We totally detected 34 fungal and 14 bacterial indicator taxa among distinctive groups by using Linear discriminant analysis effect size (LEfSe) analysis, and identified nine network hubs as the most important nodes detected in whole fungi, bacteria, and fungi–bacteria networks. At the vegetation type-level, bacterial and fungal microbiome living in C. schmidtii wetland soil possessed fewer positive interactions and lower modularity than those in other types of wetland soil. Furthermore, we also discovered that ectomycorrhizal fungi were dominant in the fungal microbiota existing in forested and shrub wetland soils, whereas arbuscular mycorrhizal fungi were predominated in those residing in herbaceous vegetation wetland soil. The distribution of the predicted bacterial functional enzymes also obviously varied among different vegetation-types. In addition, the correlation analysis further revealed that the key fungal network modules were significantly affected by the contents of total N and soil water-soluble K, whereas most of the bacterial network modules were remarkably positively driven by the contents of total N, soil water-soluble K, Mg and Na. Our study suggested that vegetation type are substantive factors controlling the diversity, composition and functional group of soil microbiomes from forest-wetland ecotone of northern Xiaoxing’an Mountains.
Saline-alkali stress is a major environmental stress affecting the growth and development of plants such as Sorbus pohuashanensis. Although ethylene plays a crucial role in plant response to saline-alkaline stress, its mechanism remains elusive. The mechanism of action of ethylene (ETH) may be related to the accumulation of hormones, reactive oxygen species (ROS), and reactive nitrogen species (RNS). Ethephon is the exogenous ethylene donor. Therefore, for the present study we initially used different concentrations of ethephon (ETH) to treat S. pohuashanensis embryos and identified the best treatment concentration and method to promote the release of dormancy and the germination of S. pohuashanensis embryos. We then analyzed the physiological indexes, including endogenous hormones, ROS, antioxidant components, and reactive nitrogen, in embryos and seedlings to elucidate the mechanism via which ETH manages stress. The analysis showed that 45 mg/L was the best concentration of ETH to relieve the embryo dormancy. ETH at this concentration improved the germination of S. pohuashanensis by 183.21% under saline-alkaline stress; it also improved the germination index and germination potential of the embryos. Further analysis revealed that ETH treatment increased the levels of 1-aminocyclopropane-1-carboxylic acid (ACC), gibberellin (GA), soluble protein, nitric oxide (NO), and glutathione (GSH); increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), nitrate reductase (NR), and nitric oxide synthase (NOS); and decreased the levels of abscisic acid (ABA), hydrogen peroxide (H2O2), superoxide anion, and malondialdehyde (MDA) of S. pohuashanensis under saline-alkali stress. These results indicate that ETH mitigates the inhibitory effects of saline-alkali stress and provides a theoretical basis by which to establish precise control techniques for the release of seed dormancy of tree species.
Background: Soil methanogenic microorganisms are one of the primary methane-producing microbes in wetlands. However, we still poorly understand the community characteristic and metabolic patterns of these microorganisms according to vegetation type and seasonal changes. Therefore, to better elucidate the effects of the vegetation type and seasonal factors on the methanogenic community structure and metabolic patterns, we detected the characteristics of the soil methanogenic mcrA gene from three types of natural wetlands in different seasons in the Xiaoxing'an Mountain region, China. Result: The results indicated that the distribution of Methanobacteriaceae (hydrogenotrophic methanogens) was higher in winter, while Methanosarcinaceae and Methanosaetaceae accounted for a higher proportion in summer. Hydrogenotrophic methanogenesis was the dominant trophic pattern in each wetland. The results of principal coordinate analysis and cluster analysis showed that the vegetation type considerably influenced the methanogenic community composition. The methanogenic community structure in the Betula platyphylla – Larix gmelinii wetland was relatively different from the structure of the other two wetland types. Indicator species analysis further demonstrated that the corresponding species of indicator operational taxonomic units from the Alnus sibirica wetland and the Betula ovalifolia wetland were closer. Network analysis showed that cooperative and competitive relationships exist both within and between the same or different trophic methanogens. The core methanogens with higher abundance in each wetland were conducive to adaptation to environmental disturbances. Conclusions: This information is crucial for the assessment of metabolic patterns of soil methanogenic archaea and future fluxes in the wetlands of the Xiaoxing'an Mountain region given their vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.