Autophagy is a well-defined catabolic mechanism whereby cytoplasmic materials are engulfed into a structure termed the autophagosome. In plants, little is known about the underlying mechanism of autophagosome formation. In this study, we report that SH3 DOMAIN-CONTAINING PROTEIN2 (SH3P2), a Bin-Amphiphysin-Rvs domain-containing protein, translocates to the phagophore assembly site/preautophagosome structure (PAS) upon autophagy induction and actively participates in the membrane deformation process. Using the SH3P2-green fluorescent protein fusion as a reporter, we found that the PAS develops from a cup-shaped isolation membranes or endoplasmic reticulum-derived omegasome-like structures. Using an inducible RNA interference (RNAi) approach, we show that RNAi knockdown of SH3P2 is developmentally lethal and significantly suppresses autophagosome formation. An in vitro membrane/lipid binding assay demonstrates that SH3P2 is a membrane-associated protein that binds to phosphatidylinositol 3-phosphate. SH3P2 may facilitate membrane expansion or maturation in coordination with the phosphatidylinositol 3-kinase (PI3K) complex during autophagy, as SH3P2 promotes PI3K foci formation, while PI3K inhibitor treatment inhibits SH3P2 from translocating to autophagosomes. Further interaction analysis shows that SH3P2 associates with the PI3K complex and interacts with ATG8s in Arabidopsis thaliana, whereby SH3P2 may mediate autophagy. Thus, our study has identified SH3P2 as a novel regulator of autophagy and provided a conserved model for autophagosome biogenesis in Arabidopsis.
Tight control of membrane protein homeostasis by selective degradation is crucial for proper cell signaling and multicellular organismal development. Membrane proteins destined for degradation, such as misfolded proteins or activated receptors, are usually ubiquitinated and sorted into the intraluminal vesicles (ILVs) of prevacuolar compartments/multivesicular bodies (PVCs/MVBs), which then fuse with vacuoles/lysosomes to deliver their contents to the lumen for degradation by luminal proteases. The formation of ILVs and the sorting of ubiquitinated membrane cargoes into them are facilitated by the endosomal sorting complex required for transport (ESCRT) machinery. Plants possess most evolutionarily conserved members of the ESCRT machinery but apparently lack orthologs of ESCRT-0 subunits and the ESCRT-I component Mvb12. Here, we identified a unique plant ESCRT component called FYVE domain protein required for endosomal sorting 1 (FREE1). FREE1 binds to phosphatidylinositol-3-phosphate (PI3P) and ubiquitin and specifically interacts with Vps23 via PTAP-like tetrapeptide motifs to be incorporated into the ESCRT-I complex. Arabidopsis free1 mutant is seedling lethal and defective in the formation of ILVs in MVBs. Consequently, endocytosed plasma membrane (PM) proteins destined for degradation, such as the auxin efflux carrier PIN2, cannot reach the lumen of the vacuole and mislocalize to the tonoplast. Collectively, our findings provide the first functional characterization of a plant FYVE domain protein, which is essential for plant growth via its role as a unique evolutionary ESCRT component for MVB biogenesis and vacuolar sorting of membrane proteins.
Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis. Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process. T he endosomal-lysosomal/vacuolar pathway is the primary catabolic system of eukaryotic cells that degrades extracellular and intracellular materials. Membrane proteins destined for degradation, such as misfolded proteins or endocytosed receptors, become tagged by ubiquitin for further sorting to the endosomal-lysosomal/vacuolar system for degradation (1). During this process, an evolutionarily conserved machinery called endosomal sorting complex required for transport (ESCRT), is responsible for sorting these ubiquitinated cargos into the intraluminal vesicles (ILVs) of prevacuolar compartments/multivesicular bodies (PVCs/MVBs), which subsequently fuse with vacuoles/lysosomes to deliver their contents into the lumen for proteolytic degradation (2, 3). Malfunction of the assembly or dissociation of the ESCRT machinery disrupts MVB formation and thus results in the accumulation of ubiquitinated membrane cargos (4, 5).Macroautophagy (hereafter as autophagy) is another highly conserved catabolic process, which converges on the endosomallysosomal/vacuolar pathway to deliver aberrant organelles, longlived proteins, and protein aggregates to the lysosome/vacuole via a unique structure termed the "autophagosome" (6). Morphologically different from MVBs, autophagosomes are characterized by a double membrane structure, which is initiated from the phagophore assembly site/preautophagosome site (PAS) (7). The proteins or organelles to be degraded are encapsulated by autophagosomes that fuse either directly with the vacuole/lysosome or with endosomes like MVBs for expansion/maturation to form amphisomes, which then fuse with vacuole/lysosome for degradation. A number of conserved autophagy-related gene (ATG) proteins have been identified as participating in the autophagy pathway in eukaryotic cells (8).Even though it is generally accepted that at least one population of...
Autophagy is a conserved pathway for bulk degradation of cytoplasmic material by a double-membrane structure named the autophagosome. The initiation of autophagosome formation requires the recruitment of autophagy-related protein 9 (ATG9) vesicles to the preautophagosomal structure. However, the functional relationship between ATG9 vesicles and the phagophore is controversial in different systems, and the molecular function of ATG9 remains unknown in plants. Here, we demonstrate that ATG9 is essential for endoplasmic reticulum (ER)-derived autophagosome formation in plants. Through a combination of genetic, in vivo imaging and electron tomography approaches, we show that Arabidopsis ATG9 deficiency leads to a drastic accumulation of autophagosome-related tubular structures in direct membrane continuity with the ER upon autophagic induction. Dynamic analyses demonstrate a transient membrane association between ATG9 vesicles and the autophagosomal membrane during autophagy. Furthermore, trafficking of ATG18a is compromised in atg9 mutants during autophagy by forming extended tubules in a phosphatidylinositol 3-phosphatedependent manner. Taken together, this study provides evidence for a pivotal role of ATG9 in regulating autophagosome progression from the ER membrane in Arabidopsis.O ne long-lasting question regarding autophagosome biogenesis is its membrane origin (1). The initiation site for autophagosomes is termed the preautophagosomal structure or phagophore assembly site (PAS). However, the source of the phagophore membrane remains controversial in different systems, and exactly how the phagophore is initiated from its membrane origin is still unclear. The core autophagy-related (ATG) machinery regulates phagophore assembly in a spatiotemporally coordinated manner whereas some of the ATG components will disassociate from the completed autophagosome and some are turned over together with the autophagosome (1-3).As the sole transmembrane protein, autophagy-related protein 9 (ATG9) has long been suggested to provide a lipid/membrane source for autophagosome formation because ATG9-deficient mutants in yeast or mammal fail to form autophagosomes (4, 5). Although ATG9 is conserved in all eukaryotes (6), it seems that ATG9 might perform its function divergently in different systems. In yeast, ATG9 participates in an early step by shuttling from a non-PAS site to the PAS site and supports an assembly model for yeast autophagosome biogenesis (4). In contrast, mammalian ATG9 is not stably incorporated into the isolation membrane or autophagosomes but is instead transiently associated with the omegasome, a phosphatidylinositol 3-phosphate (PI3P)-enriched endoplasmic reticulum (ER) subdomain (5). Cryomicroscopy studies have shown a close association between ATG9 vesicles and the omegasome structure (7), together with the presence of ATG9 on tubulovesicular membranes surrounding autophagosomes (5). A recent finding by livecell imaging indicates that autophagosome formation occurs where ATG9 vesicles coalesce with the ER ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.