Background Macular subretinal fibrosis is the end-stage complication of neovascular age-related macular degeneration (nAMD). We previously developed a mouse model of two-stage laser-induced subretinal fibrosis that mimics closely the dynamic course of macular fibrosis in nAMD patients. This study was aimed to understand the molecular mechanism of subretinal fibrosis. Methods Subretinal fibrosis was induced in C57BL/6J mice using the two-stage laser-induced protocol. Twenty days later, eyes were collected and processed for RNA sequencing (RNA-seq) analysis. DESeq2 was used to determine the differentially expressed genes (DEGs). Gene Ontology (GO) and KEGG were used to analyze the enriched pathways. The expression of the selected DEGs including Mmp12 was verified by qPCR. The expression of MMP12 in subretinal fibrosis of mouse and nAMD donor eyes was examined by immunofluorescence and confocal microscopy. The expression of collagen 1, αSMA and fibronectin and cytokines in bone marrow-derived macrophages from control and subretinal fibrosis mice were examined by qPCR, immunocytochemistry and Luminex multiplex cytokine assay. The MMP12 specific inhibitor MMP408 was used to evaluate the effect of MMP12 on TGFβ-induced macrophage-to-myofibroblast transition (MMT) in vitro and its role in subretinal fibrosis in vivo. Results RNA-seq analysis of RPE-choroid from subretinal fibrosis eyes uncovered 139 DEGs (fold change log2(fc) ≥ 0.5, FDR < 0.05), including 104 up-regulated and 35 were down-regulated genes. The top 25 enrichment GO terms were related to inflammation, blood vessels/cardiovascular development and angiogenesis. One of the most significantly upregulated genes, Mmp12, contributed to 12 of the top 25 GO terms. Higher levels of MMP12 were detected in subretinal fibrotic lesions in nAMD patients and the mouse model, including in F4/80+ or Iba1+ macrophages. BMDMs from subretinal fibrosis mice expressed higher levels of MMP12, collagen-1, αSMA and fibronectin. MMP408 dose-dependently suppressed TGFβ-induced MMT in BMDMs. In vivo treatment with MMP408 (5 mg/kg) significantly reduced subretinal fibrosis accompanied by reduced F4/80+ macrophage infiltration. Conclusions MMP12 critically contributes to the development of subretinal fibrosis, partially through promoting MMT.
Background Retinal fibrosis affects 40–70% of neovascular age-related macular degeneration patients. This study investigated the effect of ageing on subretinal fibrosis secondary to choroidal neovascularization and the mechanism of action. Methods Subretinal fibrosis was induced in young (2.5-month) and aged (15–16-month) C57BL/6J mice using the two-stage laser protocol. Five and 30 days later, eyes were collected and stained for CD45 and collagen-1 and observed by confocal microscopy. Fibrocytes (CD45+collagen-1+) were detected in the bone marrow (BM), blood and fibrotic lesions by flow cytometry and confocal microscopy, respectively. BM-derived macrophages (BMDMs) were cultured from young and aged mice with or without TGF-β1 (10 ng/mL) treatment. The expression of mesenchymal marker αSMA (Acta2), fibronectin (Fn1) and collagen-1 (Col1a1) was examined by qPCR and immunocytochemistry, whereas cytokine/chemokine production was measured using the Luminex multiplex cytokine assay. BM were transplanted from 22-month (Ly5.2) aged mice into 2.5-month (Ly5.1) young mice and vice versa. Six weeks later, subretinal fibrosis was induced in recipient mice and eyes were collected for evaluation of fibrotic lesion size. Results Under normal conditions, the number of circulating fibrocytes (CD45+collagen-1+) and the expression levels of Tgfb1, Col1a1, Acta2 and Fn1 in BMDMs were significantly higher in aged mice compared to young mice. Induction of subretinal fibrosis significantly increased the number of circulating fibrocytes, enhanced the expression of Col1a1, Acta2 and Fn1 and the production of soluble urokinase plasminogen activator surface receptor (suPAR) but decreased the production of CXCL10 in BMDMs. BMDMs from aged subretinal fibrosis mice produced significantly higher levels of VEGF, angiopoietin-2 and osteopontin than cells from young subretinal fibrosis mice. The subretinal fibrotic lesion in 15–16-month aged mice was 62% larger than that in 2.5-month young mice. The lesion in aged mice contained a significantly higher number of fibrocytes compared to that in young mice. The number of circulating fibrocytes positively correlated with the size of subretinal fibrotic lesion. Transplantation of BM from aged mice significantly increased subretinal fibrosis in young mice. Conclusions A retina–BM–blood–retina pathway of fibrocyte/macrophage recruitment exists during retinal injury. Ageing promotes subretinal fibrosis through higher numbers of circulating fibrocytes and profibrotic potential of BM-derived macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.