Our aim in this paper is to investigate the existence and uniqueness result for a class of mixed variational problems. They are governed by two variational inequalities. By applying the saddle-point theory, we obtain the existence of solutions to mixed variational problems. Finally, some frictional contact problems are given to illustrate our main results.
The aim of present work is to study some kinds of well-posedness for a class of generalized variational-hemivariational inequality problems involving set-valued operators. Some systematic approaches are presented to establish some equivalence theorems between several classes of well-posedness for the inequality problems and some corresponding metric characterizations, which generalize many known results. Finally, the well-posedness for a class of generalized mixed equilibrium problems is also considered.
<abstract><p>The inconsistent or consistent general fuzzy matrix equation are studied in this paper. The aim of this paper is threefold. Firstly, general strong fuzzy matrix solutions of consistent general fuzzy matrix equation are derived, and an algorithm for obtaining general strong fuzzy solutions of general fuzzy matrix equation by Core-EP inverse is also established. Secondly, if inconsistent or consistent general fuzzy matrix equation satisfies $ X\in R(S^{k}) $, the unique solution or unique least squares solution of consistent or inconsistent general fuzzy matrix equation are given by Core-EP inverse. Thirdly, we present an algorithm for obtaining Core-EP inverse. Finally, we present some examples to illustrate the main results.</p></abstract>
The main aim of this paper is to compute the generalized inverse, over Banach spaces by using semi-iterative method and to present the error bounds of the semi-iterative method for approximating (2) , .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.