Scutellaria baicalensis Georgi is a medicinal plant in the Lamiaceae family that contains high levels of 4’-deoxyflavone and other flavonoids in its roots. Therefore, it has strong potential as a plant resource for researching the biosynthesis of specific flavonoids. In this study, we report on a chromosome-level S. baicalensis genome assembled to nine chromosomes (376.81M) using PacBio, HiSeq XTen, and Hi-C assisted assembly. The assembly ratio was 99.22%, the contig N50 was 1.80 million bases, and the scaffold N50 was 40.57 million bases, with 31896 genes being annotated. Comparative genome analysis revealed that S. baicalensis and Salvia miltiorrhiza belonged to the same branch, and diverged 36.3 million years ago. Other typically correlated species were Boea hygrometrica and Sesamum indicum. We investigated the structural genes involved in flavonoid synthesis in combination with transcriptome sequencing analysis for different tissues (roots, stems, flowers, leaves) of purple, pink, and white flowers. The results revealed that S.baiF6H is involved in the accumulation of baicalein and was significantly increased in both purple roots vs. pink roots and white roots vs. pink roots. S.baiMYB gene family expression pattern analysis and co-expression network analysis revealed that S.baiMYB transcription factors primarily regulated the production of flavonoids in S. baicalensis. S.baiMYB serves as a major factor regulating flavonoid synthesis in the roots, where yeast one-hybrid assays revealed that these transcription factors could bind to the promoter regions of structural genes to control the accumulation of flavonoids. Genome and transcriptome sequencing, co-expression analysis, and yeast one-hybrid experiments provided valuable genetic resources for understanding flavonoid biosynthesis in S. baicalensis. These findings contribute to a better understanding of the accumulation of metabolites in Lamiaceae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.