We consider a dual-hop full-duplex relaying system, where the energy constrained relay node is powered by radio frequency signals from the source using the time-switching architecture, both the amplify-and-forward and decode-andforward relaying protocols are studied. Specifically, we provide an analytical characterization of the achievable throughput of three different communication modes, namely, instantaneous transmission, delay-constrained transmission, and delay tolerant transmission. In addition, the optimal time split is studied for different transmission modes. Our results reveal that, when the time split is optimized, the full-duplex relaying could substantially boost the system throughput compared to the conventional halfduplex relaying architecture for all three transmission modes. In addition, it is shown that the instantaneous transmission mode attains the highest throughput. However, compared to the delayconstrained transmission mode, the throughput gap is rather small. Unlike the instantaneous time split optimization which requires instantaneous channel state information, the optimal time split in the delay-constrained transmission mode depends only on the statistics of the channel, hence, is suitable for practical implementations.
Simultaneous wireless information and power transfer (SWIPT) is a promising solution to increase the lifetime of wireless nodes and hence alleviate the energy bottleneck of energy constrained wireless networks. As an alternative to conventional energy harvesting techniques, SWIPT relies on the use of radio frequency signals, and is expected to bring some fundamental changes to the design of wireless communication networks. This article focuses on the application of advanced smart antenna technologies, including multiple-input multiple-output and relaying techniques, to SWIPT. These smart antenna technologies have the potential to significantly improve the energy efficiency and also the spectral efficiency of SWIPT. Different network topologies with single and multiple users are investigated, along with some promising solutions to achieve a favorable trade-off between system performance and complexity. A detailed discussion of future research challenges for the design of SWIPT systems is also provided. Peng is also with the Key
This paper presents an analytical characterization of the ergodic capacity of
amplify-and-forward (AF) MIMO dual-hop relay channels, assuming that the
channel state information is available at the destination terminal only. In
contrast to prior results, our expressions apply for arbitrary numbers of
antennas and arbitrary relay configurations. We derive an expression for the
exact ergodic capacity, simplified closed-form expressions for the high SNR
regime, and tight closed-form upper and lower bounds. These results are made
possible to employing recent tools from finite-dimensional random matrix theory
to derive new closed-form expressions for various statistical properties of the
equivalent AF MIMO dual-hop relay channel, such as the distribution of an
unordered eigenvalue and certain random determinant properties. Based on the
analytical capacity expressions, we investigate the impact of the system and
channel characteristics, such as the antenna configuration and the relay power
gain. We also demonstrate a number of interesting relationships between the
dual-hop AF MIMO relay channel and conventional point-to-point MIMO channels in
various asymptotic regimes.Comment: 40 pages, 9 figures, Submitted to to IEEE Transactions on Information
Theor
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.