1. Rising sea levels under climate change may have significant impacts on coastal vegetation dynamics, yet the response of coastal forest growth, gas exchange and survival to seawater intrusion remains poorly documented.2. We conducted a dendroecology study across six sites in western Washington, USA, to examine how tree growth, gas exchange (indexed by basal area increment (BAI) and wood δ 13 C respectively), and survival varies with seawater exposure through two approaches. First, tree core samples were collected at a site where seawater exposure started only 4 years prior to sampling, which allowed a cause-and-effect test of the impacts of seawater exposure on trees, and second, samples were collected at five additional sites where we compared downstream to upstream trees under current sea-level conditions. 3. At the seawater intrusion site, BAI and carbon isotope discrimination (Δ) decreased significantly (p < 0.01) in the year of intrusion (2014) and stayed unchanged thereafter. Four years later (2018), the percentage of recently standing dead trees in the forest was 73.0% of the basal area. Across the regional assessment, percentage of standing dead trees was significantly greater in downstream than upstream forests at five of the six sites (averaged 37.7 ± 11.0% and 4.3 ± 2.1% basal area for downstream and upstream, respectively). Growth was significantly lower (p < 0.01) at the downstream than upstream for five sites, and Δ was lower for all needle-leaf trees (three sites) on the downstream compared to the upstream, but no difference was observed between downstream and upstream for broad-leaf trees (three sites). Synthesis.Combined both the cause-and-effect manipulative study and the regional assessment demonstrate that seawater exposure drives reductions in growth, decreased Δ of needle-leaf trees, increased mortality and greater climate sensitivity, regardless of whether the seawater exposure is recent or long-term. K E Y W O R D Scoastal forests, sea-level rise, seawater, tree growth, tree mortality, tree-ring δ 13 C
The systematic response of coastal ecosystems to inundation and salinity exposure is fundamental to their ecology and biogeochemical function. Here we observe and model freshwater‐seawater interactions in a first‐order stream—floodplain system where tidal access was recently restored. Subsurface flow and transport modeling were used to quantify and better understand the interplay of processes, properties, and conditions that control water level and salinity in the floodplain to the tidal stream. Water levels in the stream were highly correlated with tidal forcing, which resulted in episodic inundation of the floodplain at quasi‐monthly frequency. The tidal stream is the only source of salinity to the floodplain, yet shallow groundwater salinity was considerably higher than average stream salinity. The low‐permeability clay floodplain soils limit lateral groundwater flow and transport, resulting in floodplain groundwater and salinity dynamics driven almost exclusively by infiltration during inundation events. As inundation occurs during high tide, estuarine waters reach the floodplain with minor attenuation in salinity from the stream's freshwater discharge. Infiltration and salinity exposure are topography controlled and regulated by ponding depth and duration, seasonal ground saturation, and depth to water table. The model suggests that floodplain salinity is currently in an early stage of transition from pre‐restoration freshwater conditions and will not reach equilibrium for ~20 years. These findings have broad relevance for understanding how and over what time scales coastal ecosystems will respond to increasing seawater exposure from sea level rise, ocean‐originating storms, and changes in natural and man‐made barriers.
The aim of this study was to examine the magnitude of greenhouse gas (GHG) concentrations in tree stems of Pacific Northwest, USA coastal forests and evaluate various tree and site characteristics along river‐to‐sea gradients as possible drivers of tree stem GHG variation. We measured the concentration of CH4, CO2, and N2O during summer and winter in live and dead tree stems of five species from six coastal watersheds and related this to soil porewater GHG concentrations, porewater salinity, and tree characteristics. Overall, average pCO2 and pCH4 were elevated above atmospheric concentration, and average pN2O was slightly below atmospheric concentration. Stem pCO2 was higher in the summer than the winter and was higher in angiosperm trees compared to gymnosperm trees, whereas pCH4 was significantly higher in fresh upstream compared to salt‐influenced reaches. Stem pCH4 was also positively correlated with porewater pCH4 in contrast to other GHGs. The above results suggest that tree stem pCH4 in these coastal settings was primarily controlled by soil linkages, pCO2 was primarily regulated by tree physiology, and factors controlling pN2O remain unclear.
Coastal terrestrial-aquatic interfaces (TAIs) are dynamic zones of biogeochemical cycling influenced by salinity gradients. However, there is significant heterogeneity in salinity influences on TAI soil biogeochemical function. This heterogeneity is perhaps related to unrecognized mechanisms associated with carbon (C) chemistry and microbial communities. To investigate this potential, we evaluated hypotheses associated with salinity-associated shifts in organic C thermodynamics; biochemical transformations; and nitrogen-, phosphorus-, and sulfur-containing heteroatom organic compounds in a first-order coastal watershed on the Olympic Peninsula of Washington, USA. In contrast to our hypotheses, thermodynamic favorability of water-soluble organic compounds in shallow soils decreased with increasing salinity (43-867 µS cm −1 ), as did the number of inferred biochemical transformations and total heteroatom content. These patterns indicate lower microbial activity at higher salinity that is potentially constrained by accumulation of less-favorable organic C. Furthermore, organic compounds appeared to be primarily marine-or algae-derived in forested floodplain soils with more lipid-like and protein-like compounds, relative to upland soils that had more lignin-, tannin-, and carbohydrate-like compounds. Based on a recent simulation-based study, we further hypothesized a relationship between C chemistry and the ecological assembly processes governing microbial community composition. Null
The physical controlling factors on coastal plant communities are among the most dynamic of known ecosystems, but climate change alters coastal surface and subsurface hydrologic regimes, which makes rapid measurement of greenhouse gas fluxes critical. Greenhouse gas exchange rates in these terrestrial-aquatic ecosystems are highly variable worldwide with climate, soil type, plant community, and weather. Therefore, increasing data collection and availability should be a priority. Here, we demonstrate and validate physical and analytical modifications to automated soil-flux chamber measurement methods for unattended use in tidally driven wetlands, allowing the high-frequency capture of storm surge and day/night dynamics. Winter CO flux from Sarcocornia perennis marsh to the atmosphere was significantly greater during the day (2.8 mmol m hr ) than the night (2.2 mmol m hr ; p < 0.001), while CH was significantly greater during the night (0.16 μmol m hr ) than the day (-0.13 μmol m hr ; p = 0.04). The magnitude of CO flux during the day and the frequency of CH flux were reduced during a surge (p < 0.001). Surge did not significantly affect N O flux, which without non-detects was normally distributed around -24.2 nmol m hr . Analysis with sustained-flux global potentials and increased storm surge frequency scenarios, 2020 to 2100, suggested that the marsh in winter remains an atmospheric CO source. The modeled results showed an increased flux of CO to the atmosphere, while in soil, the uptake of CH increased and N O uptake decreased. We present analytical routines to correctly capture gas flux curves in dynamic overland flooding conditions and to flag data that are below detection limits or from unobserved chamber-malfunction situations. Storm surge is an important phenomenon globally, but event-driven, episodic factors can be poorly estimated by infrequent sampling. Wider deployment of this system would permit inclusion of surge events in greenhouse gas estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.