The design and self-assembly of graphene oxide (GO)-based composite membranes have attracted enormous attention due to their wide application in nanomaterial and environmental fields. In this work, we have successfully developed a strategy to fabricate new composite membranes based on poly(vinyl alcohol)/poly(acrylic acid)/carboxyl-functionalized graphene oxide modified with silver nanoparticles (PVA/PAA/GO-COOH@AgNPs), which were prepared via thermal treatment and the electrospinning technique. Due to the strong π-π forces and strong electrostatic interactions of GO–COOH sheets, the prepared composite membranes and their lager surface areas were modified by scores of AgNPs, which demonstrated that a high-efficiency photocatalyst removed the organic dyes from the aqueous solutions. The prepared PVA/PAA/GO-COOH@AgNPs nanocomposite membranes showed a remarkable photocatalytic capacity in the catalytic degradation of the methylene blue dye solutions. Most importantly, the whole process was easy, mild, and eco-friendly. Additionally, the as-prepared membranes could be repeatedly used after the catalytic reaction.
Hierarchical composite hydrogels (PAA–Ag/AgNPs) are prepared via a simple self-assembly process and coordination reaction, and demonstrate good catalytic capability for wide applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.