Knowledge of the changes of soil properties and soil particle‐size distribution (PSD) is important for quantifying soil quality and dynamics during natural succession. We applied multifractal theory to characterize the PSDs in five soil layers of nine croplands abandoned for less than 1 year, 2, 5, 7, 10, 15, 20, 30 and 35 years and evaluated the changes of soil organic carbon (SOC), total nitrogen (total N), total phosphorus (total P), soil texture and multifractal parameters [capacity dimension (D0), entropy dimension (D1), correlation dimension (D2) and Hölder exponent of order zero (α0)] during natural succession on the Loess Plateau of China. Rényi spectra (Dq) and singularity spectra f(α) characterized the PSDs well and sensitively reflected the changes of heterogeneity of the surface soil (0–20 cm) during natural succession. SOC, total N and clay contents and the multifractal parameters increased significantly by the late stage of succession, mostly in the topsoil (0–10 cm). Natural succession thus effectively improved the soil physicochemical properties on the Loess Plateau of China, even though it was time‐consuming. SOC and total N contents decreased with depth throughout the natural succession, but the multifractal parameters were higher in the topsoil only in the late stage. D1 and D2 were strongly and positively correlated with SOC and total N contents in the surface layers and with fine particles in all layers, suggesting that D1 and D2 may be sensitive and practical indices for quantifying changes in soil properties and erosion.
Analyzing the dynamic patterns of species diversity and spatial heterogeneity of vegetation in grasslands during secondary succession could help with the maintenance and management of these ecosystems. Here, we evaluated the influence of secondary succession on grassland plant diversity and spatial heterogeneity of abandoned croplands on the Loess Plateau (China) during four phases of recovery: 1–5, 5–10, 10–20, and 20–30 years. The species composition and dominance of the grassland vegetation changed markedly during secondary succession and formed a clear successional series, with the species assemblage dominated by Artemisia capillaris→ Heteropappus altaicus→ A. sacrorum. The diversity pattern was one of low–high–low, with diversity peaking in the 10–20 year phase, thus corresponding to a hump-backed model in which maximum diversity occurring at the intermediate stages. A spatially aggregated pattern prevailed throughout the entire period of grassland recovery; this was likely linked to the dispersal properties of herbaceous plants and to high habitat heterogeneity. We conclude that natural succession was conducive to the successful recovery of native vegetation. From a management perspective, native pioneer tree species should be introduced about 20 years after abandoning croplands to accelerate the natural succession of grassland vegetation.
BackgroundUnderstanding interspecific associations in old-growth forests will help to reveal mechanisms of interspecific replacement in the process of forest development and provide a theoretical basis for vegetation restoration and reestablishment. In this study, we analyzed interspecific associations of eleven dominant tree populations of varying development stages in an old-growth oak forest stand in the Qinling Mountains, China. We examined overall interspecific associations (multiple species) and pairwise interspecific associations (two species).ResultsInterspecific competition was intense during forest development and was the main factor driving succession. Community structure appears to become more stable over time which supports the harsh-benign hypothesis that interspecific competition is more common in stable sites.ConclusionOld growth oak (Quercus spp.) forests are distributed widely around the world in part due to oak being a typical K-selected species. K-selected species produce fewer, high-quality offspring with higher survival rates, strong competitive ability, and longevity. The resulting distribution shifted from clumped to random, likely as a result of intense interspecific competition creating ecological niche differentiation.
Plant communities are shaped by bottom-up processes such as competition for nutrients and top-down processes such as herbivory. Although much theoretical work has studied how herbivores can mediate plant species coexistence, indirect effects caused by the carnivores that consume herbivores have been largely ignored. These carnivores can have significant indirect effects on plants by altering herbivore density (density-mediated effects) and behavior (trait-mediated effects). Carnivores that differ in traits, particularly in their hunting mode, cause different indirect effects on plants and, ultimately, different plant community compositions. We analyze a food-web model to determine how plant coexistence is affected by herbivore-consuming carnivores, contrasting those causing only density-mediated effects with those causing trait-mediated effects as well. In the latter case, herbivores can adjust their consumption of a refuge plant species. We derive a general graphical model to study the interplay of density- and trait-mediated effects. We show that carnivores eliciting both effects can sustain plant species coexistence, given intermediate intensities of behavioral adjustments. Coexistence is more likely, and more stable, if the refuge plant is competitively dominant. These results extend our understanding of carnivore indirect effects in food webs and show that behavioral effects can have major consequences on plant community structure, stressing the need for theoretical approaches that incorporate dynamical traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.