Background
Plant carotenoids are essential for human health, having wide uses in dietary supplements, food colorants, animal feed additives, and cosmetics. With the increasing demand for natural carotenoids, plant carotenoids have gained great interest in both academic and industry research worldwide. Orange-fleshed sweetpotato (Ipomoea batatas) enriched with carotenoids is an ideal feedstock for producing natural carotenoids. However, limited information is available regarding the molecular mechanism responsible for carotenoid metabolism in sweetpotato tuberous roots.
Results
In this study, metabolic profiling of carotenoids and gene expression analysis were conducted at six tuberous root developmental stages of three sweetpotato varieties with different flesh colors. The correlations between the expression of carotenoid metabolic genes and carotenoid levels suggested that the carotenoid cleavage dioxygenase 4 (IbCCD4) and 9-cis-epoxycarotenoid cleavage dioxygenases 3 (IbNCED3) play important roles in the regulation of carotenoid contents in sweetpotato. Transgenic experiments confirmed that the total carotenoid content decreased in the tuberous roots of IbCCD4-overexpressing sweetpotato. In addition, IbCCD4 may be regulated by two stress-related transcription factors, IbWRKY20 and IbCBF2, implying that the carotenoid accumulation in sweeetpotato is possibly fine-tuned in responses to stress signals.
Conclusions
A set of key genes were revealed to be responsible for carotenoid accumulation in sweetpotato, with IbCCD4 acts as a crucial player. Our findings provided new insights into carotenoid metabolism in sweetpotato tuberous roots and insinuated IbCCD4 to be a target gene in the development of new sweetpotato varieties with high carotenoid production.
Salt stress has a serious impact on normal plant growth and yield. Carotenoid cleavage dioxygenase (CCD) degrades carotenoids to produce apocarotenoids, which are involved in plant responses to biotic and abiotic stresses. This study shows that the expression of sweet potato IbCCD4 was significantly induced by salt and dehydration stress. The heterologous expression of IbCCD4 in Arabidopsis was induced to confirm its salt tolerance. Under 200 mM NaCl treatment, compared to wild-type plants, the rosette leaves of IbCCD4-overexpressing Arabidopsis showed increased anthocyanins and carotenoid contents, an increased expression of most genes in the carotenoid metabolic pathway, and increased malondialdehyde (MDA) levels. IbCCD4-overexpressing lines also showed a decreased expression of resistance-related genes and a lower activity of three antioxidant enzymes: peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). These results indicate that IbCCD4 reduced salt tolerance in Arabidopsis, which contributes to the understanding of the role of IbCCD4 in salt stress.
B-box (BBX) which are a class of zinc finger transcription factors, play an important role in regulating of photoperiod, photomorphogenesis, and biotic and abiotic stresses in plants. However, there are few studies on the involvement of BBX transcription factors in response to abiotic stresses in sweet potato. In this paper, we cloned the DNA and promoter sequences of IbBBX28. There was one B-box conserved domain in IbBBX28, and the expression of IbBBX28 was induced under drought stress. Under drought stress, compared to wild type Arabidopsis, the protective enzyme activities (SOD, POD, and CAT) were all decreased in IbBBX28-overexpression Arabidopsis but increased in the mutant line bbx28, while the MDA content was increased in the IbBBX28-overexpression Arabidopsis and decreased in the bbx28. Moreover, the expression levels of the resistance-related genes showed the same trend as the protective enzyme activities. These results showed that IbBBX28 negatively regulates drought tolerance in transgenic Arabidopsis. Additionally, the yeast two-hybrid and BiFC assays verified that IbBBX28 interacted with IbHOX11 and IbZMAT2. The above results provide important clues for further studies on the role of IbBBX28 in regulating the stress response in sweet potato.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.