The Andean Altiplano has been occupied continuously since the late Pleistocene, ~12,000 years ago, which places the Andean natives as one of the most ancient populations living at high altitudes. In the present study, we analyzed genomic data from Native Americans living a long-time at Andean high altitude and at Amazonia and Mesoamerica lowland areas. We have identified three new candidate genes - SP100, DUOX2 and CLC - with evidence of positive selection for altitude adaptation in Andeans. These genes are involved in the TP53 pathway and are related to physiological routes important for high-altitude hypoxia response, such as those linked to increased angiogenesis, skeletal muscle adaptations, and immune functions at the fetus-maternal interface. Our results, combined with other studies, showed that Andeans have adapted to the Altiplano in different ways and using distinct molecular strategies as compared to those of other natives living at high altitudes.
South America is home to one of the most culturally diverse present-day native populations. However, the dispersion pattern, genetic substructure, and demographic complexity within South America are still poorly understood. Based on genome-wide data of 58 native populations, we provide a comprehensive scenario of South American indigenous groups considering the genomic, environmental, and linguistic data. Clear patterns of genetic structure were inferred among the South American natives, presenting at least four primary genetic clusters in the Amazonian and savanna regions and three clusters in the Andes and Pacific coast. We detected a cline of genetic variation along a west-east axis, contradicting a hard Andes-Amazon divide. This longitudinal genetic variation seemed to have been shaped by both serial population bottlenecks and isolation-by-distance. Results indicated that present-day South American substructures recapitulate ancient macroregional ancestries and western Amazonia groups show genetic evidence of cultural exchanges that led to language replacement in pre-contact times. Finally, demographic inferences pointed to a higher resilience of the western South American groups regarding population collapses caused by the European invasion and indicated pre-contact population reductions and demic expansions in South America.
Ecological conditions in the Amazon rainforests are historically favorable for the transmission of numerous tropical diseases, especially vector-borne diseases. The high diversity of pathogens likely contributes to the strong selective pressures for human survival and reproduction in this region. However, the genetic basis of human adaptation to this complex ecosystem remains unclear. This study investigates the possible footprints of genetic adaptation to the Amazon rainforest environment by analyzing the genomic data of 19 native populations. The results based on genomic and functional analysis showed an intense signal of natural selection in a set of genes related to Trypanosoma cruzi infection, which is the pathogen responsible for Chagas disease, a neglected tropical parasitic disease native to the Americas that is currently spreading worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.