Myracrodruon urundeuva ("aroeira-do-sertão") is a species threatened with extinction due to anthropogenic exploitation. Phytochemical analysis of bark, branch and leaf extracts revealed the presence of several compounds such as flavonoids, phenols, tannins, quercetin derivatives and anacardic acids. Dereplication methodology was performed to tentatively identify 50 compounds analyzed by ultra-performance liquid chromatography coupled with an electrospray ionization quadrupole time-of-flight mass spectrometry operating in MS E mode (UPLC-QTOF-MS E). The extracts exhibited anti-tumor effect in cancer cells HCT-116 (colorectal), SF-295 (glioblastoma), HL-60 (leukemia), and RAJI (leukemia). Also, these results correlate with the principal component analysis (PCA) data that identified three distinct groups indicating, efficiently, metabolic differences between organs of M. urundeuva. Through discriminatory analysis of the orthogonal partial least squares (OPLS-DA), the variable of importance in the projection (VIP) and S-Plot, we were able to determine 30 potential biomarkers. The fingerprint of hydroethanolic extracts was correlated with the cytotoxicity assay and demonstrated a significant difference in the composition of plant extract.
Abiotic allosterism is most commonly observed in hetero-bimetallic supramolecular complexes and less frequently in homo-bimetallic complexes. The use of hemilabile ligands with high synthetic complexity enables the catalytic center by the addition or removal of allosteric effectors and simplicity is unusually seen in these systems. Here we describe a simpler approach to achieve kinetic regulation by the use of dimeric Schiff base copper complexes connected by a chlorido ligand bridge. The chlorido ligand acts as a weak link between monomers, generating homo-bimetallic self-aggregating supramolecular complexes that generate monomeric species in different reaction rates depending on the solvent and on the radical moiety of the ligand. The ligand exchange was observed by electron paramagnetic resonance (EPR) and conductivity measurements, indicating that complexes with ligands bearing methoxyl (CuIIL2) and ethoxyl (CuIIL5) radicals were more prone to form dimeric complexes in comparison to ligands bearing hydrogen (CuIIL1), methyl (CuIIL3), or t-butyl (CuIIL4) radicals. The equilibrium between dimer and monomer afforded different reactivities of the complexes in acetonitrile/water and methanol/water mixtures toward urea hydrolysis as a model reaction. It was evident that the dimeric species were inactive and that by increasing the water concentration in the reaction medium, the dimeric structures dissociated to form the active monomeric structures. This behavior was more pronounced when methanol/water mixtures were employed due to a slower displacement of the chlorido bridge in this medium than in the acetonitrile/water mixtures, enabling the reaction kinetics to be evaluated. This effect was attributed to the preferential solvation shell by the organic solvents and in essence, an upregulation behavior was observed due to the intrinsic nature of the complexes to form dimeric structures in solution that could be dismantled in the presence of water, indicating their possible use as water-sensors in organic solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.