Rotating unbalance is one of the most important critical parameters that causes operational failures of rotating machinery. The uneven distribution of mass on the structure of the rotors creates heavy spots, which must be eliminated to avoid generating excessive stress on the rotor bearings. The main objective of this work is to perform the uncertainty analysis on rotating machine systems supported with rolling bearings. A computational procedure is implemented to achieve this objective that can qualitatively represent the main behaviors and parameters of rotating machines. Further, methods of uncertainty quantification are applied to verify the behavior of the system given the probability density functions of the input parameters. One of the most commonly used methods is the Monte Carlo method, which requires thousands of simulations to produce accurate results. This method is used to obtain means and standard deviations of the system responses, given the means and standard deviations of the inputs. In our work, Monte Carlo simulation has been successfully used as a reference stochastic solver to evaluating the variability of the dynamic responses.
Rotating unbalance is one of the most important critical parameters that causes operational failures of rotating machinery. The uneven distribution of mass on the structure of the rotors creates heavy spots, which must be eliminated to avoid generating excessive stress on the rotor bearings. The main objective of this work is to perform the uncertainty analysis on rotating machine systems supported with rolling bearings. A computational procedure is implemented to achieve this objective that can qualitatively represent the main behaviors and parameters of rotating machines. Further, methods of uncertainty quantification are applied to verify the behavior of the system given the probability density functions of the input parameters. One of the most commonly used methods is the Monte Carlo method, which requires thousands of simulations to produce accurate results. This method is used to obtain means and standard deviations of the system responses, given the means and standard deviations of the inputs. In our work, Monte Carlo simulation has been successfully used as a reference stochastic solver to evaluating the variability of the dynamic responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.