The purpose of this study is to analyse COVID-19 related news published across different geographical places, in order to gain insights in reporting differences. The COVID-19 pandemic had a major outbreak in January 2020 and was followed by different preventive measures, lockdown, and finally by the process of vaccination. To date, more comprehensive analysis of news related to COVID-19 pandemic are missing, especially those which explain what aspects of this pandemic are being reported by newspapers inserted in different economies and belonging to different political alignments. Since LDA is often less coherent when there are news articles published across the world about an event and you look answers for specific queries. It is because of having semantically different content. To address this challenge, we performed pooling of news articles based on information retrieval using TF-IDF score in a data processing step and topic modeling using LDA with combination of 1 to 6 ngrams. We used VADER sentiment analyzer to analyze the differences in sentiments in news articles reported across different geographical places. The novelty of this study is to look at how COVID-19 pandemic was reported by the media, providing a comparison among countries in different political and economic contexts. Our findings suggest that the news reporting by newspapers with different political alignment support the reported content. Also, economic issues reported by newspapers depend on economy of the place where a newspaper resides.INDEX TERMS COVID-19, economic issues, political issues, sentiment analysis, topic modeling.
This study aims to present an approach for the challenges of working with Sentiment Analysis (SA) applied to news articles in a multilingual corpus. It looks at the use and combination of multiple algorithms to explore news articles published in English and Portuguese. It presents a methodology that starts by evaluating and combining four SA algorithms (SenticNet, SentiStrength, Vader and BERT, being BERT trained in two datasets) to improve the quality of outputs. A thorough review of the algorithms’ limitations is conducted using SHAP, an explainable AI tool, resulting in a list of issues that researchers must consider before using SA to interpret texts. We propose a combination of the three best classifiers (Vader, Amazon BERT and Sent140 BERT) to identify contradictory results, improving the quality of the positive, neutral and negative labels assigned to the texts. Challenges with translation are addressed, indicating possible solutions for non-English corpora. As a case study, the method is applied to the study of the media coverage of London 2012 and Rio 2016 Olympic legacies. The combination of different classifiers has proved to be efficient, revealing the unbalance between the media coverage of London 2012, much more positive, and Rio 2016, more negative.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.