In the present work, we use either ethanol or ethylene glycol as reducing agents through the solvothermal method for graphite oxide reduction. A sulfuric acid treatment before the reduction process was also applied to evaluate its influence on the epoxy group ring-opening reaction. Reduced graphene oxide (RGO) samples were obtained with morphology like crumpled sheets. X-ray diffraction analyses (XRD) showed that the RGO produced via ethylene glycol (EG) reduction followed by treatment with sulfuric acid (RGOEGH) presented the largest d-spacing (0.4114 nm). For reduction with ethanol (RGOEt), the d-spacing value was 0.3883 nm. Infrared spectroscopy (FTIR) results indicated that RGOEt exhibited very low-intensity bands related to oxygenated functional groups, suggesting a high reduction degree, while the sample reduced with EG contained oxygen group bands in the spectrum that disappeared when H 2 SO 4 pretreatment was performed. Thermal gravimetric analyses (TGA) results showed that the samples present high stability and confirmed the reduction process. Moreover, the synthesized RGO sheets were comparable to those produced via more expensive and toxic methodologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.