Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delayed osseous maturation, expressive-language deficits, and a distinctive facial appearance. Occurrence is generally sporadic, although parent-to-child transmission has been reported on occasion. Employing whole-exome sequencing, we identified heterozygous truncating mutations in SRCAP in five unrelated individuals with sporadic FHS. Sanger sequencing identified mutations in SRCAP in eight more affected persons. Mutations were de novo in all six instances in which parental DNA was available. SRCAP is an SNF2-related chromatin-remodeling factor that serves as a coactivator for CREB-binding protein (CREBBP, better known as CBP, the major cause of Rubinstein-Taybi syndrome [RTS]). Five SRCAP mutations, two of which are recurrent, were identified; all are tightly clustered within a small (111 codon) region of the final exon. These mutations are predicted to abolish three C-terminal AT-hook DNA-binding motifs while leaving the CBP-binding and ATPase domains intact. Our findings show that SRCAP mutations are the major cause of FHS and offer an explanation for the clinical overlap between FHS and RTS.
Bromodomain PHD finger transcription factor (BPTF) is the largest subunit of nucleosome remodeling factor (NURF), a member of the ISWI chromatin-remodeling complex. However, the clinical consequences of disruption of this complex remain largely uncharacterized. BPTF is required for anterior-posterior axis formation of the mouse embryo and was shown to promote posterior neuroectodermal fate by enhancing Smad2-activated wnt8 expression in zebrafish. Here, we report eight loss-of-function and two missense variants (eight de novo and two of unknown origin) in BPTF on 17q24.2. The BPTF variants were found in unrelated individuals aged between 2.1 and 13 years, who manifest variable degrees of developmental delay/intellectual disability (10/10), speech delay (10/10), postnatal microcephaly (7/9), and dysmorphic features (9/10). Using CRISPR-Cas9 genome editing of bptf in zebrafish to induce a loss of gene function, we observed a significant reduction in head size of F0 mutants compared to control larvae. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and phospho-histone H3 (PH3) staining to assess apoptosis and cell proliferation, respectively, showed a significant increase in cell death in F0 mutants compared to controls. Additionally, we observed a substantial increase of the ceratohyal angle of the craniofacial skeleton in bptf F0 mutants, indicating abnormal craniofacial patterning. Taken together, our data demonstrate the pathogenic role of BPTF haploinsufficiency in syndromic neurodevelopmental anomalies and extend the clinical spectrum of human disorders caused by ablation of chromatin remodeling complexes.
The association of RASopathies [Noonan syndrome (NS) and Noonan-related syndromes] and autoimmune disorders has been reported sporadically. However, a concomitant evaluation of autoimmune diseases and an assessment of multiple autoantibodies in a large population of patients with molecularly confirmed RASopathy have not been performed. The clinical and laboratory features were analyzed in 42 RASopathy patients, the majority of whom had NS and five individuals had Noonan-related disorders. The following autoantibodies were measured: Anti-nuclear antibodies, anti-double stranded DNA, anti-SS-A/Ro, anti-SS-B/La, anti-Sm, anti-RNP, anti-Scl-70, anti-Jo-1, anti-ribosomal P, IgG and IgM anticardiolipin (aCL), thyroid, anti-smooth muscle, anti-endomysial (AE), anti-liver cytosolic protein type 1 (LC1), anti-parietal cell (APC), anti-mitochondrial (AM) antibodies, anti-liver-kidney microsome type 1 antibodies (LKM-1), and lupus anticoagulant. Six patients (14%) fulfilled the clinical criteria for autoimmune diseases [systemic lupus erythematous, polyendocrinopathy (autoimmune thyroiditis and celiac disease), primary antiphospholipid syndrome (PAPS), autoimmune hepatitis, vitiligo, and autoimmune thyroiditis]. Autoimmune antibodies were observed in 52% of the patients. Remarkably, three (7%) of the patients had specific gastrointestinal and liver autoantibodies without clinical findings. Autoimmune diseases and autoantibodies were frequently present in patients with RASopathies. Until a final conclusion of the real incidence of autoimmunity in Rasopathy is drawn, the physicians should be alerted to the possibility of this association and the need for a fast diagnosis, proper referral to a specialist and ultimately, adequate treatment.
Rare diseases comprise a diverse group of conditions, most of which involve genetic causes. We describe the variable spectrum of findings and clinical impacts of exome sequencing (ES) in a cohort of 500 patients with rare diseases. In total, 164 primary findings were reported in 158 patients, representing an overall diagnostic yield of 31.6%. Most of the findings (61.6%) corresponded to autosomal dominant conditions,
Frontonasal dysplasias (FND) comprise a spectrum of disorders caused by abnormal median facial development. Its etiology is still poorly understood but recently frontonasal dysplasia phenotypes were linked to loss-of-function mutations in the ALX homeobox gene family, which comprises the ALX1, ALX3, and ALX4 genes. All ALX-related frontonasal phenotypes till date had been compatible with an autosomal recessive mode of inheritance. In contrast, heterozygous loss-of-function mutations in ALX4 had been only associated with isolated symmetrical parietal ossification defects at the intersection of the sagittal and lambdoid sutures, known as enlarged parietal foramina. We report a family with vertical transmission from mother to son of mild frontonasal dysplasia phenotype caused by a novel ALX4 gene mutation (c.1080-1089_delGACCCGGTGCinsCTAAGATCTCAACAGAGATGGCAACT, p.Asp326fsX21).This is the first report of a frontonasal phenotype related to a heterozygous mutation in ALX4. This mutation is predicted to cause the loss of the aristaless domain in the C-terminal region of the protein and preserves the homeodomain. We speculate that a different mechanism, a dominant-negative effect, is responsible for the distinct phenotype in this family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.