Single-molecule localization microscopy provides insights into the nanometer-scale spatial organization of proteins in cells, however it does not provide information on their conformation and orientation, which are key functional signatures. Detecting single molecules’ orientation in addition to their localization in cells is still a challenging task, in particular in dense cell samples. Here, we present a polarization-splitting scheme which combines Stochastic Optical Reconstruction Microscopy (STORM) with single molecule 2D orientation and wobbling measurements, without requiring a strong deformation of the imaged point spread function. This method called 4polar-STORM allows, thanks to a control of its detection numerical aperture, to determine both single molecules’ localization and orientation in 2D and to infer their 3D orientation. 4polar-STORM is compatible with relatively high densities of diffraction-limited spots in an image, and is thus ideally placed for the investigation of dense protein assemblies in cells. We demonstrate the potential of this method in dense actin filament organizations driving cell adhesion and motility.
Advances in single-molecule localization microscopy are providing unprecedented insights into the nanometer-scale organization of protein assemblies in cells and thus a powerful means for interrogating biological function. However, localization imaging alone does not contain information on protein conformation and orientation, which constitute additional key signatures of protein function. Here, we present a new microscopy method which combines for the first time Stochastic Optical Reconstruction Microscopy (STORM) super-resolution imaging with single molecule orientation and wobbling measurements using a four polarization-resolved image splitting scheme. This new method, called 4polar-STORM, allows us to determine both single molecule localization and orientation in 2D and to infer their 3D orientation, and is compatible with high labelling densities and thus ideally placed for the determination of the organization of dense protein assemblies in cells. We demonstrate the potential of this new method by studying the nanometer-scale organization of dense actin filament assemblies driving cell adhesion and motility, and reveal bimodal distributions of actin filament orientations in the lamellipodium, which were previously only observed in electron microscopy studies. 4polar-STORM is fully compatible with 3D localization schemes and amenable to live-cell observations, and thus promises to provide new functional readouts by enabling nanometer-scale studies of orientational dynamics in a cellular context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.