A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-electron interaction for both exchange and correlation in order to combine Hartree-Fock exchange and second-order Møller-Plesset (MP2) correlation with a density functional. The RSDH scheme relies on an exact theory which is presented in some detail. Several semi-local approximations are developed for the short-range exchange-correlation density functional involved in this scheme. After finding optimal values for the two parameters of the CAM-like decomposition, the RSDH scheme is shown to have a relatively small basis dependence and to provide atomization energies, reaction barrier heights, and weak intermolecular interactions globally more accurate or comparable to range-separated MP2 or standard MP2. The RSDH scheme represents a new family of double hybrids with minimal empiricism which could be useful for general chemical applications.
We construct range-separated double-hybrid schemes which combine coupled-cluster or random-phase approximations with a density functional based on a two-parameter Coulomb-attenuating-method-like decomposition of the electron-electron interaction. We find that the addition of a fraction of short-range electron-electron interaction in the wave-function part of the calculation is globally beneficial for the range-separated doublehybrid scheme involving a variant of the random-phase approximation with exchange terms. Even though the latter scheme is globally as accurate as the corresponding scheme employing only second-order Møller-Plesset perturbation theory for atomization energies, reaction barrier heights, and weak intermolecular interactions of small molecules, it is more accurate for the more complicated case of the benzene dimer in the stacked configuration. The present range-separated double-hybrid scheme employing a random-phase approximation thus represents a new member in the family of double hybrids with minimal empiricism which could be useful for general chemical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.