BackgroundNerve damage in leprosy often causes disabilities and deformities. Prednisolone is used to treat nerve function impairment (NFI). However, optimal dose and duration of prednisolone treatment has not been established yet. Besides treating existing NFI it would be desirable to prevent NFI. Studies show that before NFI is clinically detectable, nerves often show subclinical damage. Within the ‘Treatment of Early Neuropathy in LEProsy’ (TENLEP) study two double blind randomized controlled trials (RCT) will be carried out: a trial to establish whether prednisolone treatment of 32 weeks duration is more effective than 20 weeks in restoring nerve function in leprosy patients with clinical NFI (Clinical trial) and a trial to determine whether prednisolone treatment of early sub-clinical NFI can prevent clinical NFI (Subclinical trial).MethodsTwo RCTs with a follow up of 18 months will be conducted in six centers in Asia. In the Clinical trial leprosy patients with recent (< 6 months) clinical NFI, as determined by Monofilament Test and Voluntary Muscle Test, are included. The primary outcomes are the proportion of patients with restored or improved nerve function. In the Subclinical trial leprosy patients with subclinical neuropathy, as determined by Nerve Conduction Studies (NCS) and/or Warm Detection Threshold (WDT), and without any clinical signs of NFI are randomly allocated to a placebo group or treatment group receiving 20 weeks prednisolone. The primary outcome is the proportion of patients developing clinical NFI. Reliability and normative studies are carried out before the start of the trial.DiscussionThis study is the first RCT testing a prednisolone regimen with a duration longer than 24 weeks. Also it is the first RCT assessing the effect of prednisolone in the prevention of clinical NFI in patients with established subclinical neuropathy. The TENLEP study will add to the current understanding of neuropathy due to leprosy and provide insight in the effectiveness of prednisolone on the prevention and recovery of NFI in leprosy patients. In this paper we present the research protocols for both Clinical and Subclinical trials and discuss the possible findings and implications.Trial registrationNetherlands Trial Register: NTR2300Clinical Trial Registry India: CTRI/2011/09/002022
The recent orthopaedic literature reflects a growing number of bone graft substitutes and osteogenic growth factors under investigation in a number of animal models. We attempted to establish a well-controlled, large animal model of a segmental defect in a weight-bearing long bone by developing a bilateral diaphyseal radial defect model in the canine. We also evaluated the effectiveness of ground cortical autograft as a graft material. Twenty-three adult mongrel dogs underwent bilateral radial osteotomies with creation of a 2.0-2.5-cm diaphyseal defect on each side. All dogs received cancellous autograft (CAN) on one side, nine received no graft material (DEF) on the opposite side, and 14 received morselized cortical autograft (CORT) on the opposite side. Radii were stabilized by external fixation. Animals were followed radiographically at 6-week intervals to evaluate the healing process. Thirteen dogs were sacrificed at short-term follow-up (8-12 weeks postsurgery) and 10 at long-term (16-24 weeks). Biomechanical torsion testing to failure and histological evaluation were performed on each defect. All CAN radii achieved union (100%) while only one of nine DEF radii (11%) and none of 14 (0%) of CORT radii achieved union. Statistically significant differences in biomechanical parameters between both test groups and their corresponding autograft control radii were found. Histology revealed fibrous nonunions in the DEF and CORT radii. These results demonstrate that the bilateral canine radial defect model represents a consistent and reproducible model for bone healing of segmental defects in weight-bearing long bones and that ground cortical autograft is an ineffective graft material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.