The prognosis for patients with metastatic bladder cancer (BCa) is poor, and it is not improved by current treatments. RNA-binding motif protein X-linked (RBMX) are involved in the regulation of the malignant progression of various tumors. However, the role of RBMX in BCa tumorigenicity and progression remains unclear. In this study, we found that RBMX was significantly downregulated in BCa tissues, especially in muscle-invasive BCa tissues. RBMX expression was negatively correlated with tumor stage, histological grade and poor patient prognosis. Functional assays demonstrated that RBMX inhibited BCa cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth and metastasis in vivo. Mechanistic investigations revealed that hnRNP A1 was an RBMX-binding protein. RBMX competitively inhibited the combination of the RGG motif in hnRNP A1 and the sequences flanking PKM exon 9, leading to the formation of lower PKM2 and higher PKM1 levels, which attenuated the tumorigenicity and progression of BCa. Moreover, RBMX inhibited aerobic glycolysis through hnRNP A1-dependent PKM alternative splicing and counteracted the PKM2 overexpression-induced aggressive phenotype of the BCa cells. In conclusion, our findings indicate that RBMX suppresses BCa tumorigenicity and progression via an hnRNP A1-mediated PKM alternative splicing mechanism. RBMX may serve as a novel prognostic biomarker for clinical intervention in BCa.
Abstract. In this paper, the generalized shift-splitting preconditioner is implemented for saddle point problems with symmetric positive definite (1,1)-block and symmetric positive semidefinite (2,2)-block. The proposed preconditioner is extracted form a stationary iterative method which is unconditionally convergent. Moreover, a relaxed version of the proposed preconditioner is presented and some properties of the eigenvalues distribution of the corresponding preconditioned matrix are studied. Finally, some numerical experiments on test problems arisen from finite element discretization of the Stokes problem are given to show the effectiveness of the preconditioners.
Ovulation induction therapy with clomiphene citrate can suppress endometrial receptivity. Raloxifene may be an alternative therapeutic for women with ovulatory disorders. This study aimed to compare the expression of endometrial receptivity markers, including homeobox gene 10 (HOXA10), integrin β3, and leukemia inhibitory factor (LIF), as well as pinopode production during the implantation window in mice stimulated with raloxifene and clomiphene citrate and natural cycles. Thirty-six 8-week-old female Kunming mice were randomly divided into 3 groups (n = 12) and administered daily raloxifene (22 mg/kg), clomiphene citrate (18 mg/kg), and normal saline (1 mL), respectively, by gavage. Two days later, mice were injected with 5 IU human chorionic gonadotropin and mated. Successfully mated female animals were identified with vaginal plugs designated gestation day 1. At day 4.5, pregnant donor mice were euthanized, and uterus samples were collected for immunohistochemistry, quantitative polymerase chain reaction, Western blot, and scanning electron microscopy analyses. Homeobox gene 10, integrin β3, and LIF messenger RNA (mRNA) and protein levels were significantly higher in the raloxifene-treated animals compared with the clomiphene citrate group (all P < .05) but not significantly different from saline group values, except for LIF and integrin β3 mRNA levels (P < .05). Pinopodes were abundant and well developed in the raloxifene and saline groups; however, in the clomiphene citrate-treated mice, fewer and poorly developed pinopodes were obtained. In mice, raloxifene had no effect on HOXA10, integrin β3, and LIF expression as well as pinopode production, suggesting it has no adverse effects on endometrial receptivity. Raloxifene may provide a viable alternative oral ovulation induction agent to clomiphene citrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.