The challenges of achieving both food security and environmental sustainability have resulted in a confluence of demands on land within the European Union (EU): we expect our land to provide food, fiber and fuel, to purify water, to sequester carbon, and provide a home to biodiversity as well as external nutrients in the form of waste from humans and intensive livestock enterprises. All soils can perform all of these five functions, but some soils are better at supplying selective functions. Functional Land Management is a framework for policy-making aimed at meeting these demands by incentivizing land use and soil management practices that selectively augment specific soil functions, where required. Here, we explore how the demands for contrasting soil functions, as framed by EU policies, may apply to very different spatial scales, from local to continental scales. At the same time, using Ireland as a national case study, we show that the supply of each soil function is largely determined by local soil and land use conditions, with large variations at both local and regional scales. These discrepancies between the scales at which the demands and supply of soil functions are manifested, have implications for soil and land management: while some soil functions must be managed at local (e.g., farm or field) scale, others may be offset between regions with a view to solely meeting national or continental demands. In order to facilitate the optimization of the delivery of soil functions at national level, to meet the demands that are framed at continental scale, we identify and categorize 14 policy and market instruments that are available in the EU. The results from this inventory imply that there may be no need for the introduction of new specific instruments to aid the governance of Functional Land Management. We conclude that there may be more merit in adapting existing governance instruments by facilitating differentiation between soils and landscapes.
Core Ideas Managing soil organic carbon is an essential aspect of climate‐smart agriculture. Combining component research, we derive a soil carbon management concept for Ireland. Optimized soil carbon management is differentiated in accordance with soil type. Existing policy tools can be tailored to incentivize climate‐smart land management. Soils can be a sink or source of carbon, and managing soil carbon has significant potential to partially offset agricultural greenhouse gas emissions. While European Union (EU) member states have not been permitted to account for this offsetting potential in their efforts to meet the EU 2020 reduction targets, this policy is now changing for the period 2020 to 2030, creating a demand for land management plans aimed at maximizing the offsetting potential of land. In this letter, we derive a framework for climate‐smart land management in the Atlantic climate zone of the EU by combining the results from five component research studies on various aspects of the carbon cycle. We show that the options for proactive management of soil organic carbon differ according to soil type and that a spatially tailored approach to land management will be more effective than blanket policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.