The actin cytoskeleton assembles into diverse load-bearing networks, including stress fibers (SFs), muscle sarcomeres, and the cytokinetic ring to both generate and sense mechanical forces. The LIM (Lin11, Isl- 1, and Mec-3) domain family is functionally diverse, but most members can associate with the actin cytoskeleton with apparent force sensitivity. Zyxin rapidly localizes via its LIM domains to failing SFs in cells, known as strain sites, to initiate SF repair and maintain mechanical homeostasis. The mechanism by which these LIM domains associate with stress fiber strain sites (SFSS) is not known. Additionally, it is unknown how widespread strain sensing is within the LIM protein family. We identify that the LIM domain-containing region of 18 proteins from the Zyxin, Paxillin, Tes, and Enigma proteins accumulate to SFSS. Moreover, the LIM domain region from the fission yeast protein paxillin like 1 (Pxl1) also localizes to SFSS in mammalian cells, suggesting that the strain sensing mechanism is ancient and highly conserved. We then used sequence and domain analysis to demonstrate that tandem LIM domains contribute additively, for SFSS localization. Employing in vitro reconstitution, we show that the LIM domain-containing region from mammalian zyxin and fission yeast Pxl1 binds to mechanically stressed F-actin networks but does not associate with relaxed actin filaments. We propose that tandem LIM domains recognize an F-actin conformation that is rare in the relaxed state but is enriched in the presence of mechanical stress.
The actin cytoskeleton is important for maintaining mechanical homeostasis in adherent cells, largely through its regulation of adhesion and cortical tension. The LIM (Lin-11, Isl1, MEC-3) domain-containing proteins are involved in a myriad of cellular mechanosensitive pathways. Recent work has discovered that LIM domains bind to mechanically stressed actin filaments, suggesting a novel and widely conserved mechanism of mechanosensing. This review summarizes the current state of knowledge of LIM protein mechanosensitivity.
The actin cytoskeleton assembles into diverse load-bearing networks including stress fibers, muscle sarcomeres, and the cytokinetic ring to both generate and sense mechanical forces. The LIM (Lin11, Isl-1 & Mec-3) domain family is functionally diverse, but most members can associate with the actin cytoskeleton with apparent force-sensitivity. Zyxin rapidly localizes via its LIM domains to failing stress fibers in cells, known as strain sites, to initiate stress fiber repair and maintain mechanical homeostasis. The mechanism by which these LIM domains associate with stress fiber strain sites is not known. Additionally, it is unknown how widespread strain sensing is within the LIM protein family. We observe that many, but not all, LIM domains from functionally diverse proteins localize to spontaneous or induced stress fiber strain sites in mammalian cells. Additionally, the LIM domain region from the fission yeast protein paxillin like 1 (Pxl1) also localizes to stress fiber strain sites in mammalian cells, suggesting that the strain sensing mechanism is ancient and highly conserved. Sequence analysis and mutagenesis of the LIM domain region of zyxin indicate a requirement of tandem LIM domains, which contribute additively, for sensing stress fiber strain sites. In vitro, purified LIM domains from mammalian zyxin and fission yeast Pxl1 bind to mechanically stressed F-actin networks but do not associate with relaxed actin filaments. We propose that tandem LIM domains recognize an F-actin conformation that is rare in the relaxed state but is enriched in the presence of mechanical stress. Cells are subject to a wide range of omnipresent mechanical stimuli, which play essential physiological roles. Epithelial tissue stretch modulates cell proliferation 1,2 , blood pressure regulates the contractility of endothelial cells within blood vessels 3,4 , and muscle contraction shapes connective tissue remodeling 5 . Such mechanotransduction pathways allow for the integration of mechanical cues with the biochemical and genetic circuitry of the cell. While much progress has been made to elucidate the importance of mechanical stimuli in cell physiology, the underlying force-sensing mechanisms and organizational logic of many mechanotransduction pathways are unknown.To respond to mechanical cues and dynamically modulate cell mechanics, the actin cytoskeleton exploits force-sensitive biochemistry to construct actin filament (F-actin)-based network assemblies. Focal adhesions, the adhesive organelles between cells and their external matrix, can change in composition and size under varied mechanical load 6 . At the molecular scale, these focal adhesion changes arise primarily from force-dependent modulation of constituent proteins 6-8 . The force-dependent association of the focal adhesion proteins, vinculin and talin, to actin filaments is sensitive to filament polarity 9,10 , providing a mechanism to guide local cytoskeletal architecture under load. Protrusive forces at the leading edge of migrating cells are generated by actin po...
Formins form the largest family of actin filament nucleators and elongators, involved in the assembly of diverse actin structures. Actin filament nucleation and elongation activities reside in the formin homology 1 (FH1) and FH2 domains, common to all formins. However, the rate of these reactions varies between formins by at least 20-fold. Typically, each cell expresses several distinct formins, each contributing to the assembly of one or several actin structures, raising the question of what confers each formin its specificity. Here, using the formin Fus1 in the fission yeast Schizosaccharomyces pombe, we systematically probed the importance of formin nucleation and elongation rates for function in vivo. Fus1 assembles the actin fusion focus, an aster-like structure of actin filaments at the contact site between gametes, necessary for the process of cell fusion to form the zygote during sexual reproduction. By constructing chimeric formins with combinations of FH1 and FH2 domains previously characterized in vitro, we establish that changes in formin nucleation and elongation rates have direct consequences on the architecture of the fusion focus, and that Fus1 native high nucleation and low elongation rates are optimal for fusion focus assembly. We further describe a point mutant in the Fus1 FH2 domain that preserves native nucleation and elongation rates in vitro but alters function in vivo, indicating an additional property of the FH2 domain. Thus, rates of actin assembly are tailored for assembly of specific actin structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.