Human centromeres are specialized chromatin domains containing the centromeric histone H3 variant CENP-A. CENP-A nucleosomes are interspersed with nucleosomes containing histone H3 dimethylated at lysine 4, distinguishing centromeric chromatin (CEN chromatin) from flanking heterochromatin that is defined by H3 lysine 9 methylation. To understand the relationship between chromatin organization and the genomic structure of human centromeres, we compared molecular profiles of three endogenous human centromeres, defined by uninterrupted higher-order α-satellite DNA, with human artificial chromosomes that contain discontinuous blocks of higher-order α-satellite DNA and noncentromeric DNA. The underlying sequence did not correlate with chromatin states, because both higher-order α-satellite DNA and noncentromeric DNA were enriched for modifications that define CEN chromatin, euchromatin, and heterochromatin. Human artificial chromosomes were also organized into distinct domains. CENP-A and heterochromatin were assembled over noncentromeric DNA, including the gene blasticidin, into nonoverlapping domains. Blasticidin transcripts were enriched at sites of CENP-A binding but not at H3 methylated at lysine 9, indicating that formation of CEN chromatin within a repetitive DNA environment does not preclude gene expression. Finally, we tested the role of centric heterochromatin as a centromeric boundary by increasing CENP-A dosage to expand the CEN domain. In response, H3 lysine 9 dimethylation, but not trimethylation, was markedly decreased at all centromeres examined. We propose that human centromere regions normally exist in a dynamic state in which a regional boundary, defined by H3 lysine 9 dimethylation, separates CEN chromatin from constitutive heterochromatin.
Chestnut short-tailed bats, Carollia castanea, and Seba's short-tailed bats, C. perspicillata (Phyllostomidae), were radio-tracked (N = 1593 positions) in lowland rain forest at Tiputini Biodiversity Station, Orellana Province, Ecuador. For 11 C. castanea, mean home range was 6.8 ± 2.2 ha, mean core-use area was 1.7 ± 0.8 ha, and mean long axis across home range was 438 ± 106 m. For three C. perspicillata, mean home range was 5.5 ± 1.7 ha, mean core-use area was 1.3 ± 0.6 ha, and mean long axis was 493 ± 172 m. Groups of less than five C. castanea occupied day-roosts in earthen cavities that undercut banks the Tiputini River. Carollia perspicillata used tree hollows and buildings as day-roosts. Interspecific and intraspecific overlap among short-tailed bats occurred in core-use areas associated with clumps of fruiting Piper hispidum (peppers) and Cecropia sciadophylla. Piper hispidum seeds were present in 80 percent of the fecal samples from C. castanea and 56 percent of samples from C. perspicillata. Carollia perspicillata handled pepper fruits significantly faster than C. castanea; however, C. castanea commenced foraging before C. perspicillata emerged from day-roosts. Evidence for exploitative competition between C. castanea and C. perspicillata is suggested by our observations that 95 percent of ripe P. hispidum fruits available at sunset disappear before sunrise (N = 74 marked fruits). Piper hispidum plants produced zero to 12 ripe infructescences per plant each night during peak production. Few ripe infructescences of P. hispidum were available during the dry season; however, ripe infructescences of C. sciadophylla, remained abundant.Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp.
Background Most knowledge of primary HIV-1 infection is based on subtype B studies, whereas the evolution of viral parameters in the early phase of HIV-1 subtype C infection is not well characterized. Methods The kinetics of viral RNA, proviral DNA, CD4+ T-cell count, and subsets of CD4+ T cells expressing CCR5 or CXCR4 were characterized in 8 acute and 62 recent subtype C infections over the first year postseroconversion. Results The viral RNA peak was 6.25 ± 0.92 log10 copies per milliliter. After seroconversion, heterogeneity among acute cases was evident by patterns of change in viral load and CD4+ T-cell count over time. The patterns were supported by the rate of viral RNA decline from peak (P = 0.022), viral RNA means (P = 0.005), CD4 levels (P <0.001), and CD4 decline to 350 (P = 0.011) or 200 (P = 0.046). Proviral DNA had no apparent peak and its mean was 2.59 ± 0.69 log10 per 106 peripheral blood mononuclear cell. In recent infections, viral RNA set point was 4.00 ± 0.97 log10 and viral RNA correlated inversely with CD4+ T cells (P <0.001) and directly with proviral DNA (P <0.001). Conclusions Distinct patterns of viral RNA evolution may exist shortly after seroconversion in HIV-1 subtype C infection. The study provides better understanding of the early phase of subtype C infection.
The evolution of proviral gp120 during the first year after seroconversion in HIV-1 subtype C infection was addressed in a case series of eight subjects. Multiple viral variants were found in two out of eight cases. Slow rate of viral RNA decline and high early viral RNA set point were associated with a higher level of proviral diversity from 0 to 200 days after seroconversion. Proviral divergence from MRCA over the same period also differed between subjects with slow and fast decline of viral RNA, suggesting that evolution of proviral gp120 early in infection may be linked to the level of viral RNA replication. Changes in the length of variable loops were minimal, and length reduction was more common than length increase. Potential N-linked glycosylation sites ranged ±one site, showing common fluctuations in the V4 and V5 loops. These results highlight the role of proviral gp120 diversity and diversification in the pathogenesis of acute HIV-1 subtype C infection.
BackgroundAiming to answer the broad question “When does mutation occur?” this study examined the time of appearance, dominance, and completeness of in vivo Gag mutations in primary HIV-1 subtype C infection.MethodsA primary HIV-1C infection cohort comprised of 8 acutely and 34 recently infected subjects were followed frequently up to 500 days post-seroconversion (p/s). Gag mutations were analyzed by employing single-genome amplification and direct sequencing. Gag mutations were determined in relation to the estimated time of seroconversion. Time of appearance, dominance, and completeness was compared for different types of in vivo Gag mutations.ResultsReverse mutations to the wild type appeared at a median (IQR) of 62 (44;139) days p/s, while escape mutations from the wild type appeared at 234 (169;326) days p/s (p<0.001). Within the subset of mutations that became dominant, reverse and escape mutations appeared at 54 (30;78) days p/s and 104 (47;198) days p/s, respectively (p<0.001). Among the mutations that reached completeness, reverse and escape mutations appeared at 54 (30;78) days p/s and 90 (44;196) days p/s, respectively (p = 0.006). Time of dominance for reverse mutations to and escape mutations from the wild type was 58 (44;105) days p/s and 219 (90;326) days p/s, respectively (p<0.001). Time of completeness for reverse and escape mutations was 152 (100;176) days p/s and 243 (101;370) days p/s, respectively (p = 0.001). Fitting a Cox proportional hazards model with frailties confirmed a significantly earlier time of appearance (hazard ratio (HR): 2.6; 95% CI: 2.3–3.0), dominance (4.8 (3.4–6.8)), and completeness (3.6 (2.3–5.5)) of reverse mutations to the wild type Gag than escape mutations from the wild type. Some complex mutational pathways in Gag included sequential series of reversions and escapes.ConclusionsThe study identified the timing of different types of in vivo Gag mutations in primary HIV-1 subtype C infection in relation to the estimated time of seroconversion. Overall, the in vivo reverse mutations to the wild type occurred significantly earlier than escape mutations from the wild type. This shorter time to incidence of reverse mutations remained in the subsets of in vivo Gag mutations that reached dominance or completeness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.