Mosaic KRAS variants and other RASopathy genes cause oculoectodermal, encephalo-cranio-cutaneous lipomatosis, and Schimmelpenning-Feuerstein-Mims syndromes, and a spectrum of vascular malformations, overgrowth and other associated anomalies, the latter of which are only recently being characterized. We describe
We report on a 5‐year‐old female born to consanguineous parents, ascertained at the age of 23 months for an elevated plasma methionine level, a mildly abnormal total plasma homocysteine (tHcy), and elevated aminotransferases. She had global developmental delay, microcephaly, dysmorphic facial features, hypotonia, nystagmus and tremor in her upper extremities. Metabolic investigations demonstrated elevations in plasma methionine, plasma
S
‐adenosylmethionine (SAM) and plasma
S
‐adenosylhomocysteine (SAH), with normal urine adenosine levels. Some of the elevations persisted for over 1 year. Sequencing of the
ADK
and
AHCY
genes was negative for causative variants. Plasma methionine normalized 1 year after ascertainment, but SAM and SAH continued to be elevated for six more months before normalization, and aminotransferases remained mildly elevated. Whole exome sequencing demonstrated a homozygous pathogenic variant; NM_018297.3(NGLY1):c.1405C>T (p.Arg469*) in exon 9 of the
NGLY1
gene, for which both parents were heterozygous. To our knowledge, this is the first report of NGLY1 deficiency with elevations in plasma methionine, SAM and SAH and a slight elevation of tHcy. Less than 20 patients have been reported with NGLY1 deficiency worldwide and this case expands on the biochemical phenotype of this newly discovered inborn error of metabolism.
CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell–cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.
RASopathies are a group of genetic disorders that are caused by genes that affect the canonical Ras/mitogen‐activated protein kinase (MAPK) signaling pathway. Despite tremendous progress in understanding the molecular consequences of these genetic anomalies, little movement has been made in translating these findings to the clinic. This year, the seventh International RASopathies Symposium focused on expanding the research knowledge that we have gained over the years to enhance new discoveries in the field, ones that we hope can lead to effective therapeutic treatments. Indeed, for the first time, research efforts are finally being translated to the clinic, with compassionate use of Ras/MAPK pathway inhibitors for the treatment of RASopathies. This biannual meeting, organized by the RASopathies Network, brought together basic scientists, clinicians, clinician scientists, patients, advocates, and their families, as well as representatives from pharmaceutical companies and the National Institutes of Health. A history of RASopathy gene discovery, identification of new disease genes, and the latest research, both at the bench and in the clinic, were discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.