Background and aims Internet usage worldwide has become a primary source of health-related information and an important resource for parents to find advice on how to promote their child’s development and well-being. It is important that healthcare professionals understand what information is available to parents online to best support families and children. The current study evaluated the quality of online resources accessible for parents of children who are late to talk. Method Fifty-four web pages were evaluated for their usability and reliability using the LIDA instrument and Health on the Net Foundation code of conduct certification, and readability using the Flesch Reading Ease Score and Flesch-Kincaid Grade Level. Origin, author(s), target audience, topics discussed, terminology used, and recommendations were also examined. Results The majority of websites scored within the moderate range (50–90%) for total LIDA scores and usability, but scored in the low range for reliability (<50%). Significantly higher reliability scores ( p < 0.001) were found for sites with Health on the Net Foundation code of conduct certification. Readability fell within the standard range. The largest proportion of websites were American, written by speech-language pathologists, with the most common topics being milestones, tips and strategies, and red flags. Discrepancies were mostly seen in terminology and misinformation, and when present, usually related to risk factors and causes. Conclusion Prior to recommending websites to parents, health professionals should consider readability of the content, check that information is up-to-date, and confirm website sources and reputable authorship. Health professionals should also be aware of the types of unclear or inaccurate information to which parents of children who are late to talk may be exposed online.
Purpose Developmental language disorder (DLD), an unexplained problem using and understanding spoken language, has been hypothesized to have an underlying auditory processing component. Auditory feedback plays a key role in speech motor control. The current study examined whether auditory feedback is used to regulate speech production in a similar way by children with DLD and their typically developing (TD) peers. Method Participants aged 6–11 years completed tasks measuring hearing, language, first formant (F1) discrimination thresholds, partial vowel space, and responses to altered auditory feedback with F1 perturbation. Results Children with DLD tended to compensate more than TD children for the positive F1 manipulation and compensated less than TD children in the negative shift condition. Conclusion Our findings suggest that children with DLD make atypical use of auditory feedback.
Allocation and use of central processing capacity have been associated with the P3 event-related brain potential amplitude in a large variety of non-linguistic tasks. However, little is known about the P3 in spoken language production. Moreover, the few studies that are available report opposing P3 effects when task complexity is manipulated. We investigated allocation and use of central processing capacity in a spoken phrase production task: Participants switched every second trial between describing pictures using noun phrases with one adjective (size only; simple condition, e.g., "the big desk") or two adjectives (size and color; complex condition, e.g., "the big red desk"). Capacity allocation was manipulated by complexity, and capacity use by switching. Response time (RT) was longer for complex than for simple trials. Moreover, complexity and switching interacted: RTs were longer on switch than on repeat trials for simple phrases but shorter on switch than on repeat trials for complex phrases. P3 amplitude increased with complexity. Moreover, complexity and switching interacted: The complexity effect was larger on the switch trials than on the repeat trials. These results provide evidence that the allocation and use of central processing capacity in language production are differentially reflected in the P3 amplitude.
PurposeThe ability to hear ourselves speak has been shown to play an important role in the development and maintenance of fluent and coherent speech. Despite this, little is known about the developing speech motor control system throughout childhood, in particular if and how vocal and articulatory control may differ throughout development. A scoping review was undertaken to identify and describe the full range of studies investigating responses to frequency altered auditory feedback in pediatric populations and their contributions to our understanding of the development of auditory feedback control and sensorimotor learning in childhood and adolescence.MethodRelevant studies were identified through a comprehensive search strategy of six academic databases for studies that included (a) real-time perturbation of frequency in auditory input, (b) an analysis of immediate effects on speech, and (c) participants aged 18 years or younger.ResultsTwenty-three articles met inclusion criteria. Across studies, there was a wide variety of designs, outcomes and measures used. Manipulations included fundamental frequency (9 studies), formant frequency (12), frequency centroid of fricatives (1), and both fundamental and formant frequencies (1). Study designs included contrasts across childhood, between children and adults, and between typical, pediatric clinical and adult populations. Measures primarily explored acoustic properties of speech responses (latency, magnitude, and variability). Some studies additionally examined the association of these acoustic responses with clinical measures (e.g., stuttering severity and reading ability), and neural measures using electrophysiology and magnetic resonance imaging.ConclusionFindings indicated that children above 4 years generally compensated in the opposite direction of the manipulation, however, in several cases not as effectively as adults. Overall, results varied greatly due to the broad range of manipulations and designs used, making generalization challenging. Differences found between age groups in the features of the compensatory vocal responses, latency of responses, vocal variability and perceptual abilities, suggest that maturational changes may be occurring in the speech motor control system, affecting the extent to which auditory feedback is used to modify internal sensorimotor representations. Varied findings suggest vocal control develops prior to articulatory control. Future studies with multiple outcome measures, manipulations, and more expansive age ranges are needed to elucidate findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.