Cell transplantation therapies have become a major focus in pre-clinical research as a promising strategy for the treatment of spinal cord injury (SCI). In this article, we systematically review the available pre-clinical literature on the most commonly used cell types in order to assess the body of evidence that may support their translation to human SCI patients. These cell types include Schwann cells, olfactory ensheathing glial cells, embryonic and adult neural stem=progenitor cells, fate-restricted neural=glial precursor cells, and bone-marrow stromal cells. Studies were included for review only if they described the transplantation of the cell substrate into an in-vivo model of traumatic SCI, induced either bluntly or sharply. Using these inclusion criteria, 162 studies were identified and reviewed in detail, emphasizing their behavioral effects (although not limiting the scope of the discussion to behavioral effects alone). Significant differences between cells of the same ''type'' exist based on the species and age of donor, as well as culture conditions and mode of delivery. Many of these studies used cell transplantations in combination with other strategies. The systematic review makes it very apparent that cells derived from rodent sources have been the most extensively studied, while only 19 studies reported the transplantation of human cells, nine of which utilized bone-marrow stromal cells. Similarly, the vast majority of studies have been conducted in rodent models of injury, and few studies have investigated cell transplantation in larger mammals or primates. With respect to the timing of intervention, nearly all of the studies reviewed were conducted with transplantations occurring subacutely and acutely, while chronic treatments were rare and often failed to yield functional benefits.
Poor survival of cells transplanted into the CNS is a widespread problem and limits their therapeutic potential. Whereas substantial loss of transplanted cells has been described, the extent of acute cell loss has not been quantified previously. To assess the extent and temporal profile of transplanted cell death, and the contributions of necrosis and apoptosis to this cell death following spinal cord injury, different concentrations of Schwann cells (SCs), lentivirally transduced to express green fluorescent protein (GFP), were transplanted into a 1-week-old moderate contusion of the adult rat thoracic spinal cord. In all cases, transplanted cells were present from 10 min to 28 days. There was a 78% reduction in SC number within the first week, with no significant decrease thereafter. Real-time polymerase chain reaction showed a similar 80% reduction in GFP-DNA within the first week, confirming that the decrease in SC number was due to death rather than decreased GFP transgene expression. Cells undergoing necrosis and apoptosis were identified using antibodies against the calpain-mediated fodrin breakdown product and activated caspase 3, respectively, as well as ultrastructurally. Six times more SCs died during the first week after transplantation by necrosis than apoptosis, with the majority of cell death occurring within the first 24 h. The early death of transplanted SCs indicates that factors present, even 1 week after a moderate contusion, are capable of inducing substantial transplanted cell death. Intervention by strategies that limit necrosis and/or apoptosis should be considered for enhancing acute survival of transplanted cells.
Although transplanted Schwann cells (SCs) can promote axon regeneration and remyelination and improve recovery in models of spinal cord injury, little is known about their survival and how they interact with host tissue. Using labeled SCs from transgenic rats expressing human placental alkaline phosphatase (PLAP), SC survival in a spinal cord contusion lesion was assessed. Few PLAP SCs survived at 2 weeks after acute transplantation. They died early due to necrosis and apoptosis. Delaying transplantation until 7 days after injury improved survival. A second wave of cell death occurred after surviving cells had integrated into the spinal cord. Survival of PLAP SCs was enhanced by immunosuppression with cyclosporin; delayed transplantation in conjunction with immunosuppression resulted in the best survival. In all cases, transplantation of SCs resulted in extensive infiltration of endogenous p75+ cells into the injury site, suggesting that endogenous SCs may play an important role in the repair observed after SC transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.