Background Foraging performance is widely hypothesized to play a key role in shaping age-specific demographic rates in wild populations, yet the underlying behavioral changes are poorly understood. Seabirds are among the longest-lived vertebrates, and demonstrate extensive age-related variation in survival, breeding frequency and success. The breeding season is a particularly critical phase during the annual cycle, but it remains unclear whether differences in experience or physiological condition related to age interact with the changing degree of the central-place constraint in shaping foraging patterns in time and space. Methods Here we analyze tracking data collected over two decades from congeneric black-browed (BBA) and grey-headed (GHA) albatrosses, Thalassarche melanophris and T. chrysostoma, breeding at South Georgia. We compare the foraging trip parameters, at-sea activity (flights and landings) and habitat preferences of individuals aged 10–45 years and contrast these patterns between the incubation and early chick-rearing stages. Results Young breeders of both species showed improvements in foraging competency with age, reducing foraging trip duration until age 26. Thereafter, there were signs of foraging senescence; older adults took gradually longer trips, narrowed their habitat preference (foraging within a smaller range of sea surface temperatures) (GHA), made fewer landings and rested on the water for longer (BBA). Some age-specific effects were apparent for each species only in certain breeding stages, highlighting the complex interaction between intrinsic drivers in determining individual foraging strategies. Conclusions Using cross-sectional data, this study highlighted clear age-related patterns in foraging behavior at the population-level for two species of albatrosses. These trends are likely to have important consequences for the population dynamics of these threatened seabirds, as young or old individuals may be more vulnerable to worsening environmental conditions.
Aim Determining the drivers of movement of different life‐history stages is crucial for understanding age‐related changes in survival rates and, for marine top predators, the link between fisheries overlap and incidental mortality (bycatch), which is driving population declines in many taxa. Here, we combine individual tracking data and a movement model to investigate the environmental drivers and conservation implications of divergent movement patterns in juveniles (fledglings) and adults of a threatened seabird, the white‐chinned petrel (Procellaria aequinoctialis). Location South‐west Atlantic Ocean. Methods We compare the spatial distributions and movement characteristics of juvenile, breeding and non‐breeding adult petrels, and apply a mechanistic movement model to investigate the extent to which chlorophyll a concentrations (a proxy for food resources) and ocean surface winds drive their divergent distribution patterns. We also consider the conservation implications by determining the relative overlap of each life‐history stage with fishing intensity and reported fishing effort (proxies for bycatch risk). Results Naïve individuals fledged with similar flight capabilities (based on distances travelled, flight speeds and track sinuosity) to adults but differed in their trajectories. Comparison of simulations from the mechanistic model with real tracks showed that juvenile movements are best predicted by prevailing wind patterns, whereas adults are attracted to food resources on the Patagonian Shelf. The juveniles initially dispersed to less productive oceanic waters than those used by adults, and overlapped less with fishing activity; however, as they moved westwards towards South America, bycatch risk increased substantially. Main conclusions The use of a mechanistic framework provided insights into the ontogeny of movement strategies within the context of learned versus innate behaviour and demonstrated that divergent movement patterns of adults and juveniles can have important implications for the conservation of threatened seabirds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.