Highlights d SMAPs bind at an intersubunit pocket defined by all three PP2A subunits d DT-061 (SMAP) binding results in selective stabilization of PP2A-B56a heterotrimers d Stabilization of B56a heterotrimers biases PP2A toward substrates such as c-Myc d Accumulation of methylated, B56a heterotrimers, is a potential clinical biomarker
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that regulates many cellular processes. Given the central role of PP2A in regulating diverse biological functions and its dysregulation in many diseases, including cancer, PP2A directed therapeutics have become of great interest. The main approaches leveraged thus far can be categorized as follows: 1) inhibiting endogenous inhibitors of PP2A, 2) targeted disruption of post translational modifications on PP2A subunits, or 3) direct targeting of PP2A. Additional insight into the structural, molecular, and biological framework driving the efficacy of these therapeutic strategies will provide a foundation for the refinement and development of novel and clinically tractable PP2A targeted therapies.
Kinase inhibitor resistance constitutes a major unresolved clinical challenge in cancer. Furthermore, the role of serine/threonine phosphatase deregulation as a potential cause for resistance to kinase inhibitors has not been thoroughly addressed. We characterize protein phosphatase 2A (PP2A) activity as a global determinant of KRAS-mutant lung cancer cell resistance across a library of >200 kinase inhibitors. The results show that PP2A activity modulation alters cancer cell sensitivities to a large number of kinase inhibitors. Specifically, PP2A inhibition ablated mitogen-activated protein kinase kinase (MEK) inhibitor response through the collateral activation of AKT/mammalian target of rapamycin (mTOR) signaling. Combination of mTOR and MEK inhibitors induced cytotoxicity in PP2A-inhibited cells, but even this drug combination could not abrogate MYC up-regulation in PP2A-inhibited cells. Treatment with an orally bioavailable small-molecule activator of PP2A DT-061, in combination with the MEK inhibitor AZD6244, resulted in suppression of both p-AKT and MYC, as well as tumor regression in two KRAS-driven lung cancer mouse models. DT-061 therapy also abrogated MYC-driven tumorigenesis. These data demonstrate that PP2A deregulation drives MEK inhibitor resistance in KRAS-mutant cells. These results emphasize the need for better understanding of phosphatases as key modulators of cancer therapy responses.
on behalf of the author G.N. have filed patents covering composition of matter on the small molecules disclosed herein for the treatment of human cancer and other diseases and for methods of use for using these small molecule PP2A activators. RAPPTA Therapeutics LLC has licensed this intellectual property for the clinical and commercial development of this series of small molecule PP2A activators. The author G.N. has an ownership interest in RAPPTA Therapeutics LLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.