Subventricular zone (SVZ) neural stem cells (NSCs) are the cornerstone of the perinatal neurogenic niche. Microglia are immune cells of the nervous system that are enriched in the neonatal SVZ. Although microglia regulate NSCs, the extent to which this interaction is bi-directional is unclear. Extracellular vesicles (EVs) are cell-derived particles that encase miRNA and proteins. Here, we demonstrate that SVZ NSCs generate and release EVs. Neonatal electroporated fluorescent EV fusion proteins were released by NSCs and subsequently cleared from the SVZ. EVs were preferentially targeted to microglia. Small RNA sequencing identified miRNAs within the EVs that regulate microglia physiology and morphology. EVs induced a transition to a CD11b/Iba1 non-stellate microglial morphology. The transition accompanied a microglial transcriptional state characterized by Let-7-regulated cytokine release and a negative feedback loop that controlled NSC proliferation. These findings implicate an NSC-EV-microglia axis and provide insight to normal and pathophysiological brain development.
Highlights d Neonatal SVZ neural stem cells release extracellular vesicles d SVZ neural stem cell extracellular vesicles are targeted to microglia d Neural stem cell extracellular vesicles and RNA content regulate microglia morphology
Ras homology enriched in brain (Rheb) is a GTPase that activates the protein kinase mammalian Target of Rapamycin (mTOR). Rheb mutations cause intellectual delay and megalencephaly. mTOR hyperactivation causes a constellation of neurodevelopmental disorders called "mTOR-opathies" that are frequently accompanied by hyperexcitable cortical malformations. Cortical malformations within the anterior cingulate cortex (ACC) and somatosensory cortex (SSC) frequently colocalize with hyperexcitability. Although Rheb and mTOR are implicated in the formation of cortical lesions, seizure activity, and defects in neuronal migration, the contribution of Rheb to changes in neuron size and dendrite morphology is not well established. Here, in utero electroporation of the developing embryonic brain was used to assess soma and dendrite growth in ACC and SCC layer II/III neurons. We found that between P0 and P21, neuronal soma size increased by 50 and 122 percent in the ACC and SSC, respectively. The increased size was accompanied by an increase in the number of basal dendrites and enhanced dendrite complexity. As an indicator of the involvement of the mTOR pathway in neuron maturation, phosphorylation of the mammalian target of rapamycin (mTOR) substrate S6 was identified in migrating cortical neuroblasts and maturing neurons. Notably, ectopic expression of Rheb caused cortical malformations comprised of ectopically positioned cytomegalic neurons with dendrite hypertrophy. This study provides a direct comparison of neuron maturation across two cortical regions during development, provides evidence for mTOR pathway activity during neuron maturation, and demonstrates that ectopic Rheb expression without mutation is sufficient to induce cortical malformations with cytomegaly and dendrite hypertrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.